]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
plein d'aspel
authorJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Wed, 22 Jul 2015 11:01:29 +0000 (13:01 +0200)
committerJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Wed, 22 Jul 2015 11:01:29 +0000 (13:01 +0200)
11FCT.tex
12TIPE.tex
14Secrypt.tex
15RairoGen.tex
15TSI.tex
chaosANN.tex
mixage.tex
modelchecking.tex
sdd.tex

index ffa577564a7e9045d5b64f3d78da4027b4eba2ce..0e9c64fa487ed5fb073c761d9e9c557172a00d55 100644 (file)
--- a/11FCT.tex
+++ b/11FCT.tex
@@ -80,7 +80,7 @@ ont un graphe d'itérations  $\textsc{giu}(f)$ fortement connexe.
 Pratiquement, il existe 34226 fonctions de $\Bool^4$ dans lui même qui 
 vérifient ce graphe d'intéraction. 
 Cependant, nombreuses sont celles qui possèdent un comportement équivalent.
 Pratiquement, il existe 34226 fonctions de $\Bool^4$ dans lui même qui 
 vérifient ce graphe d'intéraction. 
 Cependant, nombreuses sont celles qui possèdent un comportement équivalent.
-Deux fonctions sont equivalentes si leurs \textsc{giu} sont isomorphes 
+Deux fonctions sont équivalentes si leurs \textsc{giu} sont isomorphes 
 (au sens de l'isomorphisme de graphes). Il ne reste alors plus que 
 520 fonctions $f$ non équivalentes de graphe d'interactions $\Gamma(f)$.
 
 (au sens de l'isomorphisme de graphes). Il ne reste alors plus que 
 520 fonctions $f$ non équivalentes de graphe d'interactions $\Gamma(f)$.
 
index 85efe7887f31637058b7eba14c7e397640342c05..7ebcfde08a12135fe0e794406acccb7119118fe8 100644 (file)
@@ -30,7 +30,7 @@ x^{t+1}=F_{f_u}(x^t,s_t).
 On peut alors construire l'espace 
 $\mathcal{X}_u =
 \Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$ 
 On peut alors construire l'espace 
 $\mathcal{X}_u =
 \Bool^{{\mathsf{N}}} \times \llbracket1;{\mathsf{N}}\rrbracket^{\Nats}$ 
-et la fonction d'iteration $G_{f_u}$ définie  de 
+et la fonction d'itération $G_{f_u}$ définie  de 
 $\mathcal{X}_u$ 
 dans lui-même par 
 \begin{equation}
 $\mathcal{X}_u$ 
 dans lui-même par 
 \begin{equation}
@@ -95,7 +95,7 @@ chaotiques $G_{f_u}$ sur $\mathcal{X}_u$}
 On peut tout d'abord démontrer que pour toute fonction booléenne $f$, 
 $G_{f_u}$ est continue sur $\mathcal{X}_u$ (cf annexe~\ref{anx:cont}).   
 
 On peut tout d'abord démontrer que pour toute fonction booléenne $f$, 
 $G_{f_u}$ est continue sur $\mathcal{X}_u$ (cf annexe~\ref{anx:cont}).   
 
-Pour charactérister les fonctions rendant chaotiques dans $\mathcal{X}_u$ les itérations de $G_{f_u}$ 
+Pour caractériser les fonctions rendant chaotiques dans $\mathcal{X}_u$ les itérations de $G_{f_u}$ 
 on se focalise donc que sur la régularité et sur la transitivité de $G_{f_u}$.
 Ceci se réalise en établissant les relations d'inclusion entre 
 les ensembles $\mathcal{T}$ des fonctions topologiquement transitives, 
 on se focalise donc que sur la régularité et sur la transitivité de $G_{f_u}$.
 Ceci se réalise en établissant les relations d'inclusion entre 
 les ensembles $\mathcal{T}$ des fonctions topologiquement transitives, 
@@ -111,7 +111,7 @@ et $\mathcal{C}$ des fonctions chaotiques définis respectivement ci-dessous:
 \end{itemize}
 
 
 \end{itemize}
 
 
-On énnonce les théorèmes successifs suivants.
+On énonce les théorèmes successifs suivants.
 Leur preuve est donnée en annexe~\ref{anx:chaos:unaire}.
 
 \begin{theorem} $G_{f_u}$  est transitive si et seulement si 
 Leur preuve est donnée en annexe~\ref{anx:chaos:unaire}.
 
 \begin{theorem} $G_{f_u}$  est transitive si et seulement si 
index 9de2b0d504d219f3c41c746cb316d040f409c4b9..b2ae05d752e2efd67ce5e0a3eb3daa64195aed0a 100644 (file)
@@ -23,7 +23,7 @@ results to provide a generation of DSSC matrices with small mixing times.
 
 \section{Programmation logique par contraintes sur des domaines finis}
 Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. 
 
 \section{Programmation logique par contraintes sur des domaines finis}
 Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. 
-Pour éviter d'avoir à gérér des fractions, on peut considérer que 
+Pour éviter d'avoir à gérer des fractions, on peut considérer que 
 les matrices (d'incidence) à générer ont des lignes et des colonnes dont les 
 sommes valent ${\mathsf{N}}$ à chaque fois.  
 On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\mathsf{N}}$ telles que 
 les matrices (d'incidence) à générer ont des lignes et des colonnes dont les 
 sommes valent ${\mathsf{N}}$ à chaque fois.  
 On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\mathsf{N}}$ telles que 
@@ -37,16 +37,16 @@ configuration $i$ est inférieur à ${\mathsf{N}}$;
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
 si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
 si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
-\item pour chque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
+\item pour chaque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
 la matrice est stochastique à droite; 
 la matrice est stochastique à droite; 
-\item pour chque indice de colonne $j$, 
+\item pour chaque indice de colonne $j$, 
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
 \item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
 \item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
-arithmétiques simples (sommes et poduits). il pourrait théoriquement être 
-traité par desdémarches de programation logique par contrainte
+arithmétiques simples (sommes et produits). il pourrait théoriquement être 
+traité par des démarches de programmation logique par contrainte
 sur des domaines finis (comme en PROLOG).
 L'algorithme donné en Figure~\ref{fig:prolog}
 est en effet le c{\oe}ur du programme PROLOG 
 sur des domaines finis (comme en PROLOG).
 L'algorithme donné en Figure~\ref{fig:prolog}
 est en effet le c{\oe}ur du programme PROLOG 
@@ -86,7 +86,7 @@ bistoc(X):-
 \caption{Code PROLOG permettant de trouver toutes les matrices DSSC pour $n=2$}\label{fig:prolog}
 \end{figure}
 
 \caption{Code PROLOG permettant de trouver toutes les matrices DSSC pour $n=2$}\label{fig:prolog}
 \end{figure}
 
-Enfin, on définit la relation $\mathcal{R}$, qui est établie pourles deux 
+Enfin, on définit la relation $\mathcal{R}$, qui est établie pour les deux 
 fonctions  $f$ et $g$ si leur graphes 
 respectifs  $\textsf{giu}(f)$ et $\textsf{giu}(g)$ 
 sont isomorphes.
 fonctions  $f$ et $g$ si leur graphes 
 respectifs  $\textsf{giu}(f)$ et $\textsf{giu}(g)$ 
 sont isomorphes.
@@ -105,10 +105,10 @@ Cependant, l'approche ne permet pas d'engendrer toutes les solutions
 pour $n=4$.
 Cette approche, basée sur une démarche de type \emph{générer, tester} ne peut 
 pas être retenue pour $n$ de grande taille, même 
 pour $n=4$.
 Cette approche, basée sur une démarche de type \emph{générer, tester} ne peut 
 pas être retenue pour $n$ de grande taille, même 
-en s'appuyant sur l'éfficience de l'algorithme de backtrack natif de PROLOG.
+en s'appuyant sur l'efficience de l'algorithme de backtrack natif de PROLOG.
 
 Cependant, pour des valeurs de $n$ petites, nous avons 
 
 Cependant, pour des valeurs de $n$ petites, nous avons 
-comparé les fonctions non équivalantes selon leur proportion
+comparé les fonctions non équivalentes selon leur proportion
 à engendrer des temps de mélange petits (cf. équation~\ref{eq:mt:ex}).
 
 
 à engendrer des temps de mélange petits (cf. équation~\ref{eq:mt:ex}).
 
 
@@ -395,17 +395,17 @@ sur des sous-ensembles des partitionnements possibles.
 
 Ces fonctions étant générée, on s'intéresse à étudier à quelle vitesse 
 un générateur les embarquant converge vers la distribution uniforme.
 
 Ces fonctions étant générée, on s'intéresse à étudier à quelle vitesse 
 un générateur les embarquant converge vers la distribution uniforme.
-C'est l'objeftif de la section suivante. 
+C'est l'objectif de la section suivante. 
 
 \section{Quantifier l'écart par rapport à la distribution uniforme} 
 On considère ici une fonction construite comme à la section précédente.
 On s'intéresse ici à étudier de manière théorique les 
 
 \section{Quantifier l'écart par rapport à la distribution uniforme} 
 On considère ici une fonction construite comme à la section précédente.
 On s'intéresse ici à étudier de manière théorique les 
-itérations définies à l'equation~(\ref{eq:asyn}) pour une 
+itérations définies à l'équation~(\ref{eq:asyn}) pour une 
 stratégie donnée.
 stratégie donnée.
-Tout d'abord, celles-ci peuvent être inerprétées comme une marche le long d'un 
+Tout d'abord, celles-ci peuvent être interprétées comme une marche le long d'un 
 graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la 
 stratégie.
 graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la 
 stratégie.
-On remaque que ce graphe d'itération est toujours un sous graphe 
+On remarque que ce graphe d'itération est toujours un sous graphe 
 du   ${\mathsf{N}}$-cube augmenté des 
 boucles sur chaque sommet, \textit{i.e.}, les arcs
 $(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$. 
 du   ${\mathsf{N}}$-cube augmenté des 
 boucles sur chaque sommet, \textit{i.e.}, les arcs
 $(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$. 
@@ -416,7 +416,7 @@ Ceci se base sur la théorie des chaînes de Markov.
 Pour une référence 
 générale à ce sujet on pourra se référer 
 au livre~\cite{LevinPeresWilmer2006},
 Pour une référence 
 générale à ce sujet on pourra se référer 
 au livre~\cite{LevinPeresWilmer2006},
-particulièrementau chapitre sur les temps d'arrêt.
+particulièrement au chapitre sur les temps d'arrêt.
 
 
 
 
 
 
@@ -433,7 +433,7 @@ p(e) \left\{
 \end{array}
 \right.  
 $$
 \end{array}
 \right.  
 $$
-La matrice $P$ de la chaine de Markov associée à  $f^*$ 
+La matrice $P$ de la chaîne de Markov associée à  $f^*$ 
 est  
 \[
 P=\dfrac{1}{6} \left(
 est  
 \[
 P=\dfrac{1}{6} \left(
@@ -465,7 +465,7 @@ De plus, si
 $\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a 
 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
 
 $\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a 
 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
 
-Soit $P$ une matrice d'une chaîne de Markovs sur $\Bool^{\mathsf{N}}$. 
+Soit $P$ une matrice d'une chaîne de Markov sur $\Bool^{\mathsf{N}}$. 
 $P(X,\cdot)$ est la distribution induite par la  $X^{\textrm{ème}}$ colonne
 de  $P$. 
 Si la chaîne de  Markov induite par 
 $P(X,\cdot)$ est la distribution induite par la  $X^{\textrm{ème}}$ colonne
 de  $P$. 
 Si la chaîne de  Markov induite par 
@@ -500,7 +500,7 @@ $f(X_{t-1},Z_t)$  une représentation fonctionnelle de celle-ci.
 Un \emph{temps d'arrêt aléatoire} pour la chaîne de 
 Markov  est un temps d'arrêt pour 
 $(Z_t)_{t\in\mathbb{N}}$.
 Un \emph{temps d'arrêt aléatoire} pour la chaîne de 
 Markov  est un temps d'arrêt pour 
 $(Z_t)_{t\in\mathbb{N}}$.
-Si la chaîne de Markov  est irreductible et a $\pi$
+Si la chaîne de Markov  est irréductible et a $\pi$
 comme distribution stationnaire, alors un 
 \emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
 (qui peut dépendre de la configuration initiale $X$),
 comme distribution stationnaire, alors un 
 \emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
 (qui peut dépendre de la configuration initiale $X$),
@@ -527,4 +527,4 @@ $E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
 Sans entrer dans les détails de la preuve, on remarque que le calcul 
 de cette borne ne tient pas en compte le fait qu'on préfère enlever des 
 chemins hamiltoniens équilibrés. 
 Sans entrer dans les détails de la preuve, on remarque que le calcul 
 de cette borne ne tient pas en compte le fait qu'on préfère enlever des 
 chemins hamiltoniens équilibrés. 
-En intégrant cette contrainte, la borne supérieure pourraît être réduite.
+En intégrant cette contrainte, la borne supérieure pourrait être réduite.
index 010beb92fd0d5d96d3345424c18899bb1fd2f4d9..fe1c034ca2c7dd8f515fd0799c896bf7bf3c8ed9 100644 (file)
@@ -16,7 +16,7 @@ Cette section présente une application directe de la théorie développée ci-a
 à la génération de nombres pseudo aléatoires. 
 On présente tout d'abord le générateur
 basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), 
 à la génération de nombres pseudo aléatoires. 
 On présente tout d'abord le générateur
 basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), 
-puis comment intégrer la contrainte de distributionuniforme
+puis comment intégrer la contrainte de distribution uniforme
 de la sortie 
 dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). 
 L'approche est évaluée dans la dernière section.
 de la sortie 
 dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). 
 L'approche est évaluée dans la dernière section.
@@ -69,14 +69,14 @@ de nombres pseudo aléatoires
 Cet algorithme est utilisée dans notre générateur pour construire la longueur 
 de la stratégie ainsi que les éléments qui la composent.
 Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ 
 Cet algorithme est utilisée dans notre générateur pour construire la longueur 
 de la stratégie ainsi que les éléments qui la composent.
 Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ 
-selon une distributionuniforme et utilise 
+selon une distribution uniforme et utilise 
 \textit{XORshift} qui est une classe de générateurs de
 nombres pseudo aléatoires conçus par George Marsaglia. 
 
 
 L'algorithme \textit{XORshift} 
 exploite itérativement l'opérateur $\oplus$  
 \textit{XORshift} qui est une classe de générateurs de
 nombres pseudo aléatoires conçus par George Marsaglia. 
 
 
 L'algorithme \textit{XORshift} 
 exploite itérativement l'opérateur $\oplus$  
-sur des nombres obtenus grâce à des decalages de bits.
+sur des nombres obtenus grâce à des décalages de bits.
 Cet opérateur, défini dans $\Bool^{n}$, 
 applique la fonction \og  xor \fg{} 
 aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
 Cet opérateur, défini dans $\Bool^{n}$, 
 applique la fonction \og  xor \fg{} 
 aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
@@ -118,8 +118,8 @@ si  la propriété suivante est établie:
 $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
 
 On énonce enfin le théorème suivant liant les 
 $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
 
 On énonce enfin le théorème suivant liant les 
-vecteur de probabilite 
-et les chaines de Markov.
+vecteur de probabilités 
+et les chaînes de Markov.
 
 
  
 
 
  
@@ -128,11 +128,11 @@ et les chaines de Markov.
   Si $M$ est une matrice stochastique régulière, alors $M$ 
   possède un unique vecteur stationnaire de probabilités  $\pi$
   ($\pi.M = \pi$).
   Si $M$ est une matrice stochastique régulière, alors $M$ 
   possède un unique vecteur stationnaire de probabilités  $\pi$
   ($\pi.M = \pi$).
-  De plus, si $\pi^0$ est un {vecteurDeProbabilite
+  De plus, si $\pi^0$ est un {vecteur de probabilités
  et si on définit 
   la suite $(\pi^{k})^{k \in  \Nats}$ par 
   $\pi^{k+1} = \pi^k.M $ pour $k = 0, 1,\dots$ 
  et si on définit 
   la suite $(\pi^{k})^{k \in  \Nats}$ par 
   $\pi^{k+1} = \pi^k.M $ pour $k = 0, 1,\dots$ 
-  alors la {chaineDeMarkov} $\pi^k$
+  alors la {chaîne de Markov} $\pi^k$
   converge vers $\pi$ lorsque $k$ tend vers l'infini.
 \end{theorem}
 
   converge vers $\pi$ lorsque $k$ tend vers l'infini.
 \end{theorem}
 
@@ -228,7 +228,7 @@ Il est facile de vérifier que la matrice de transitions
 d'un tel processus 
 est $M_g   = \frac{1}{2} \check{M}_g$, 
 où $\check{M}_g$ est la matrice d' adjacence  donnée en 
 d'un tel processus 
 est $M_g   = \frac{1}{2} \check{M}_g$, 
 où $\check{M}_g$ est la matrice d' adjacence  donnée en 
-figure~\ref{fig:g:incidence} (voir ci-après), et similairement pour $M_h$. 
+figure~\ref{fig:g:incidence} (voir ci-après), et  de manière similaire pour $M_h$. 
 
 \begin{figure}[h]
   \begin{center}
 
 \begin{figure}[h]
   \begin{center}
@@ -293,7 +293,7 @@ de valeurs  soit suffisamment grand de sorte que
 le vecteur d’état de la chaîne de Markov
 ait une distribution suffisamment proche de la distribution uniforme.
 
 le vecteur d’état de la chaîne de Markov
 ait une distribution suffisamment proche de la distribution uniforme.
 
-On énnonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
+On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
 
 \begin{theorem}
   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
 
 \begin{theorem}
   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
@@ -311,7 +311,7 @@ On énnonce directement le théorème suivant dont la preuve est donnée en anne
 
 On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}.
 On a vu qu'il y avait  520 fonctions $f$ non isomorphes de graphe d'interactions  $\Gamma(f)$, 
 
 On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}.
 On a vu qu'il y avait  520 fonctions $f$ non isomorphes de graphe d'interactions  $\Gamma(f)$, 
-dont seulement 16 d'entre elles possédent une matrice doublement stochastique.
+dont seulement 16 d'entre elles possèdent une matrice doublement stochastique.
 
 La figure~\ref{fig:listfonction} explicite ces 16 fonctions en 
 définissant les images des éléments de la liste
 
 La figure~\ref{fig:listfonction} explicite ces 16 fonctions en 
 définissant les images des éléments de la liste
@@ -432,8 +432,8 @@ L'expérience a montré notamment que toutes ces fonctions
 passent avec succès cette batterie de tests.
 
 Pour conclure cette section, on remarque que le générateur de nombres pseudo-aléatoires 
 passent avec succès cette batterie de tests.
 
 Pour conclure cette section, on remarque que le générateur de nombres pseudo-aléatoires 
-a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorqu'il y a une sortie pour chaque itération.
-Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformémement distribuée: 
+a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorsqu'il y a une sortie pour chaque itération.
+Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformément distribuée: 
 se rapprocher de cette distribution nécessite en effet un nombre plus élevé
 d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire 
 d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près.
 se rapprocher de cette distribution nécessite en effet un nombre plus élevé
 d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire 
 d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près.
@@ -444,7 +444,7 @@ est l'objectif de la section suivante.
 \section{Un PRNG basé sur des itérations unaires qui est chaotique }
 
 Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires 
 \section{Un PRNG basé sur des itérations unaires qui est chaotique }
 
 Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires 
-pésenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente 
+présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente 
 est chaotique sur cet espace.
 
 \subsection{Un espace  $\mathcal{X}_{\mathsf{N},\mathcal{P}}$    pour le PRNG de l'algorithme~\ref{CI Algorithm}}
 est chaotique sur cet espace.
 
 \subsection{Un espace  $\mathcal{X}_{\mathsf{N},\mathcal{P}}$    pour le PRNG de l'algorithme~\ref{CI Algorithm}}
@@ -461,7 +461,7 @@ Dans l'algorithme~\ref{CI Algorithm},
 $\mathsf{p}$ vaut 1 et  $p_1=b$. 
 
 
 $\mathsf{p}$ vaut 1 et  $p_1=b$. 
 
 
-Cet  algorithme peut être vu comme $b$ compostions de la function $F_{f_u}$.
+Cet  algorithme peut être vu comme $b$ compostions de la fonction $F_{f_u}$.
 Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
 compositions fonctionnelles de $F_{f_u}$.
 Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
 Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
 compositions fonctionnelles de $F_{f_u}$.
 Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
@@ -485,7 +485,7 @@ Le second élément est aussi une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats
 La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
 La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
 
 La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
 La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
 
-Définissons la fonction de décallage  $\Sigma$ pour chaque  élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
+Définissons la fonction de décalage  $\Sigma$ pour chaque  élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
 $$\begin{array}{cccc}
 \Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow
 &\mathds{S}_{\mathsf{N},\mathcal{P}} \\
 $$\begin{array}{cccc}
 \Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow
 &\mathds{S}_{\mathsf{N},\mathcal{P}} \\
@@ -493,7 +493,7 @@ $$\begin{array}{cccc}
 \end{array}
 $$
 En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et 
 \end{array}
 $$
 En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et 
-effectue $v^0$ décallage vers la droite sur la première et un décallage vers la droite 
+effectue $v^0$ décalage vers la droite sur la première et un décalage vers la droite 
 sur la seconde.
 
 
 sur la seconde.
 
 
@@ -534,7 +534,7 @@ $u^0, u^1, \hdots, u^{v^0-1}$ et  $\check{u}^0, \check{u}^1, \hdots, \check{u}^{
 suivie par les différences entre $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ et
 $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
 
 suivie par les différences entre $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ et
 $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
 
-Plus précisemment, soit 
+Plus précisément, soit 
 $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et 
 $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
 \begin{itemize}
 $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et 
 $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
 \begin{itemize}
@@ -609,7 +609,7 @@ On prend alors le $v^0=1$ premier terme de $u$,
 chaque terme étant codé sur $n=2$ éléments, soit 06.
 Comme on itère au plus $\max{(\mathcal{P})}$ fois, 
 on complète cette valeur par des 0 de sorte que 
 chaque terme étant codé sur $n=2$ éléments, soit 06.
 Comme on itère au plus $\max{(\mathcal{P})}$ fois, 
 on complète cette valeur par des 0 de sorte que 
-la chaine obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
+la chaîne obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
 0600000000000000000000. 
 De manière similaire, les $\check{v}^0=2$ premiers
 termes de $\check{u}$ sont représentés par 
 0600000000000000000000. 
 De manière similaire, les $\check{v}^0=2$ premiers
 termes de $\check{u}$ sont représentés par 
@@ -655,7 +655,7 @@ $d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
 
 A partir de  $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$, on 
 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
 
 A partir de  $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$, on 
-definit le graphe orienté $\textsc{giu}_{\mathcal{P}}(f)$ de la manière suivante:
+définit le graphe orienté $\textsc{giu}_{\mathcal{P}}(f)$ de la manière suivante:
 \begin{itemize}
 \item les n{\oe}uds sont les  $2^\mathsf{N}$ configurations de $\mathds{B}^\mathsf{N}$,
 %\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples 
 \begin{itemize}
 \item les n{\oe}uds sont les  $2^\mathsf{N}$ configurations de $\mathds{B}^\mathsf{N}$,
 %\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples 
@@ -699,7 +699,7 @@ Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{g
     }
 
     \end{center}
     }
 
     \end{center}
-    \caption{Graphes d'iterations $\textsc{giu}_{\mathcal{P}}(h)$ pour $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$}
+    \caption{Graphes d'itérations $\textsc{giu}_{\mathcal{P}}(h)$ pour $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$}
     %\label{fig:xplgraphIter}
   \end{figure}
 
     %\label{fig:xplgraphIter}
   \end{figure}
 
@@ -714,7 +714,7 @@ $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$ déjà détail
 Le graphe $\textsc{giu}_{\{1\}}(h)$ a déjà été donné à la figure~\ref{fig:h:iter}.
 Les graphes $\textsc{giu}_{\{2\}}(h)$, $\textsc{giu}_{\{3\}}(h)$  et
 $\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figure~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}. 
 Le graphe $\textsc{giu}_{\{1\}}(h)$ a déjà été donné à la figure~\ref{fig:h:iter}.
 Les graphes $\textsc{giu}_{\{2\}}(h)$, $\textsc{giu}_{\{3\}}(h)$  et
 $\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figure~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}. 
-Le premier (repsectivement le second) 
+Le premier (respectivement le second) 
 illustre le comportement du générateur lorsque qu'on itère exactement 
 2 fois (resp. 3 fois) puis qu'on affiche le résultat.
 Le dernier donnerait le comportement d'un générateur qui s'autoriserait 
 illustre le comportement du générateur lorsque qu'on itère exactement 
 2 fois (resp. 3 fois) puis qu'on affiche le résultat.
 Le dernier donnerait le comportement d'un générateur qui s'autoriserait 
index 76e0203ebf681fa2c274c0ceaf26a6fd60e24aa1..f2fe17b230376ff32b1fe05010c4da5e8e71c5be 100644 (file)
--- a/15TSI.tex
+++ b/15TSI.tex
@@ -8,7 +8,7 @@ On reprend ici le même plan que dans la section précédente.
 Dans le schéma généralisé, à la  $t^{\textrm{ème}}$ itération, 
 c'est l'ensemble 
 des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui 
 Dans le schéma généralisé, à la  $t^{\textrm{ème}}$ itération, 
 c'est l'ensemble 
 des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui 
-sont  mis à jour (c.f. équation~(\ref{eq:schema:generalise})).
+sont  mis à jour (cf. équation~(\ref{eq:schema:generalise})).
 On redéfinit la fonction la fonction
   $F_{f_g}:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
   \rightarrow \Bool^{\mathsf{N}}$  par
 On redéfinit la fonction la fonction
   $F_{f_g}:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
   \rightarrow \Bool^{\mathsf{N}}$  par
@@ -42,7 +42,7 @@ configurations $x^t$ sont définies par la récurrence
   $X^0=(x^0,S)$ 
   
   
   $X^0=(x^0,S)$ 
   
   
-On onstruit cette fois-ci l'espace 
+On construit cette fois ci l'espace 
 $\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
 
 $\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
 
index 239251ecbcdda8b5ea03ba12ee8361656930cb4c..b814c12eb1408468f914c1e6c3a6b12a807d5269 100644 (file)
@@ -4,19 +4,19 @@
 Les réseaux de neurones chaotiques ont été étudiés à de maintes reprises 
 par le passé en raison notamment de leurs applications potentielles:
 %les mémoires associatives~\cite{Crook2007267}  
 Les réseaux de neurones chaotiques ont été étudiés à de maintes reprises 
 par le passé en raison notamment de leurs applications potentielles:
 %les mémoires associatives~\cite{Crook2007267}  
-les  composants utils à la  sécurité comme les fonctions de 
+les  composants utiles à la  sécurité comme les fonctions de 
 hachage~\cite{Xiao10},
 le tatouage numérique~\cite{1309431,Zhang2005759}
 ou les schémas de chiffrement~\cite{Lian20091296}.  
 Dans tous ces cas, l'emploi de fonctions chaotiques est motivé par 
 hachage~\cite{Xiao10},
 le tatouage numérique~\cite{1309431,Zhang2005759}
 ou les schémas de chiffrement~\cite{Lian20091296}.  
 Dans tous ces cas, l'emploi de fonctions chaotiques est motivé par 
-leur comportement imprévisibile et proche de l'aléa. 
+leur comportement imprévisible et proche de l'aléa. 
 
 
 Les réseaux de neurones chaotiques peuvent être conçus selon plusieurs 
 principes. Des neurones modifiant leur état en suivant une fonction non 
 linéaire son par exemple appelés neurones chaotiques~\cite{Crook2007267}.
 L'architecture de réseaux de neurones de type Perceptron multi-couches
 
 
 Les réseaux de neurones chaotiques peuvent être conçus selon plusieurs 
 principes. Des neurones modifiant leur état en suivant une fonction non 
 linéaire son par exemple appelés neurones chaotiques~\cite{Crook2007267}.
 L'architecture de réseaux de neurones de type Perceptron multi-couches
-(MLP) n'iterent quant à eux, pas nécesssairement de fonctions chaotiques.
+(MLP) n'itèrent quant à eux, pas nécessairement de fonctions chaotiques.
 Il a cependant été démontré  que ce sont des approximateurs 
 universels~\cite{Cybenko89,DBLP:journals/nn/HornikSW89}.   
 Ils permettent, dans certains cas, de simuler des comportements 
 Il a cependant été démontré  que ce sont des approximateurs 
 universels~\cite{Cybenko89,DBLP:journals/nn/HornikSW89}.   
 Ils permettent, dans certains cas, de simuler des comportements 
@@ -64,7 +64,7 @@ $f:\Bool^n\to\Bool^n$ telle que  $\textsc{giu}(f)$ est fortement connexe.
 Ainsi $G_{f_u}$ est chaotique d'après le théorème~\ref{Th:CaracIC}.
 
 On considère ici le schéma unaire défini par l'équation (\ref{eq:asyn}).
 Ainsi $G_{f_u}$ est chaotique d'après le théorème~\ref{Th:CaracIC}.
 
 On considère ici le schéma unaire défini par l'équation (\ref{eq:asyn}).
-On construit un perceptron multi-couche associé à la fonction  
+On construit un Perceptron multi-couches associé à la fonction  
 $F_{f_u}$. 
 Plus précisément, pour chaque entrée 
  $(x,s)   \in  \mathds{B}^n \times [n]$,
 $F_{f_u}$. 
 Plus précisément, pour chaque entrée 
  $(x,s)   \in  \mathds{B}^n \times [n]$,
@@ -83,7 +83,7 @@ On obtient une réseau de neurones dont le comportement est le suivant
   à travers les liens de retours.
 \item Lorsque le réseau est  activé à la $t^{th}$  itération, l'état du 
   système $x^t  \in \mathds{B}^n$ reçu depuis la couche de sortie ainsi que le 
   à travers les liens de retours.
 \item Lorsque le réseau est  activé à la $t^{th}$  itération, l'état du 
   système $x^t  \in \mathds{B}^n$ reçu depuis la couche de sortie ainsi que le 
-  premier terme de la  sequence $(S^t)^{t  \in \Nats}$
+  premier terme de la  séquence $(S^t)^{t  \in \Nats}$
   (\textit{i.e.},  $S^0  \in [n]$)  servent à construire le nouveau vecteur de sortie.
   Ce nouveau vecteur, qui représente le nouvel état du système dynamique, satisfait:
   \begin{equation}
   (\textit{i.e.},  $S^0  \in [n]$)  servent à construire le nouveau vecteur de sortie.
   Ce nouveau vecteur, qui représente le nouvel état du système dynamique, satisfait:
   \begin{equation}
@@ -94,7 +94,7 @@ On obtient une réseau de neurones dont le comportement est le suivant
 \begin{figure}
   \centering
   \includegraphics[scale=0.625]{images/perceptron}
 \begin{figure}
   \centering
   \includegraphics[scale=0.625]{images/perceptron}
-  \caption{Un perceptron équivalent  aux itérations unitaires}
+  \caption{Un Perceptron équivalent  aux itérations unitaires}
   \label{Fig:perceptron}
 \end{figure}
 
   \label{Fig:perceptron}
 \end{figure}
 
@@ -112,7 +112,7 @@ On peut donc le  qualifier de chaotique au sens de Devaney.
 \section{Vérifier si un réseau de neurones est chaotique}
 \label{S3}
 On s'intéresse maintenant au cas où l'on dispose d'un
 \section{Vérifier si un réseau de neurones est chaotique}
 \label{S3}
 On s'intéresse maintenant au cas où l'on dispose d'un
-réseau de neurones de type perceptron multi-couches
+réseau de neurones de type Perceptron multi-couches
 dont on cherche à savoir s'il est chaotique (parce qu'il a par exemple été 
 déclaré comme tel) au sens de Devaney. 
 On considère de plus que sa topologie est la suivante:
 dont on cherche à savoir s'il est chaotique (parce qu'il a par exemple été 
 déclaré comme tel) au sens de Devaney. 
 On considère de plus que sa topologie est la suivante:
@@ -136,7 +136,7 @@ $\left(\left(x_1,\dots,x_n\right),s\right)    \in   \mathds{B}^n \times[n]$
 le vecteur 
 $\left(y_1,\dots,y_n\right)       \in       \mathds{B}^n$, où
 $\left(y_1,\dots,y_n\right)$  sont les sorties du réseau neuronal
 le vecteur 
 $\left(y_1,\dots,y_n\right)       \in       \mathds{B}^n$, où
 $\left(y_1,\dots,y_n\right)$  sont les sorties du réseau neuronal
-àaprès l'initialisation de la couche d'entrée avec 
+après l'initialisation de la couche d'entrée avec 
 $\left(s,\left(x_1,\dots, x_n\right)\right)$.  Ensuite, on définie $f:
 \mathds{B}^n       \rightarrow      \mathds{B}^n$  telle que 
 $f\left(x_1,x_2,\dots,x_n\right)$ est égal à 
 $\left(s,\left(x_1,\dots, x_n\right)\right)$.  Ensuite, on définie $f:
 \mathds{B}^n       \rightarrow      \mathds{B}^n$  telle que 
 $f\left(x_1,x_2,\dots,x_n\right)$ est égal à 
@@ -164,7 +164,7 @@ des itération unaires chaotiques?}
 Cette section s'intéresse à étudier le comportement d'un réseau de neurones 
 face à des itérations unaires chaotiques, comme définies à 
 la section~\ref{sec:TIPE12}.
 Cette section s'intéresse à étudier le comportement d'un réseau de neurones 
 face à des itérations unaires chaotiques, comme définies à 
 la section~\ref{sec:TIPE12}.
-Plus précésment, on considère dans cette partie une fonction  dont le graphe 
+Plus précisément, on considère dans cette partie une fonction  dont le graphe 
 des itérations unaires est fortement connexe et une séquence dans 
 $[n]^{\mathds{N}}$. On cherche à construire un réseau de neurones
 qui approximerait les itérations de la fonction $G_{f_u}$ comme définie 
 des itérations unaires est fortement connexe et une séquence dans 
 $[n]^{\mathds{N}}$. On cherche à construire un réseau de neurones
 qui approximerait les itérations de la fonction $G_{f_u}$ comme définie 
@@ -211,17 +211,17 @@ Cependant, une telle représentation rapproche
 arbitrairement des configurations diamétralement
 opposées dans le $n$-cube comme  une puissance de
 deux et la configuration immédiatement précédente: 10000 serait modélisée 
 arbitrairement des configurations diamétralement
 opposées dans le $n$-cube comme  une puissance de
 deux et la configuration immédiatement précédente: 10000 serait modélisée 
-par 16 et  et 01111 par 15 alros que leur distance de Hamming est 15.
+par 16 et  et 01111 par 15 alors que leur distance de Hamming est 15.
 De manière similaire, ce codage éloigne des configurations qui sont 
 très proches: par exemple 10000 et 00000 ont une distance de Hamming 
 de 1 et sont respectivement représentées par 16 et 0.
 Pour ces raisons, le codage retenu est celui des codes de Gray~\cite{Gray47}.
 
 Concentrons nous sur la traduction de la stratégie.
 De manière similaire, ce codage éloigne des configurations qui sont 
 très proches: par exemple 10000 et 00000 ont une distance de Hamming 
 de 1 et sont respectivement représentées par 16 et 0.
 Pour ces raisons, le codage retenu est celui des codes de Gray~\cite{Gray47}.
 
 Concentrons nous sur la traduction de la stratégie.
-Il n'est naturellement pas possible de traduire une stragtégie 
+Il n'est naturellement pas possible de traduire une stratégie 
 infinie quelconque à l'aide d'un nombre fini d'éléments.
 On se restreint donc à des stratégies de taille 
 infinie quelconque à l'aide d'un nombre fini d'éléments.
 On se restreint donc à des stratégies de taille 
-$l \in \llbracket 2,k\rrbracket$, où $k$ est un parametre défini
+$l \in \llbracket 2,k\rrbracket$, où $k$ est un paramètre défini
 initialement. 
 Chaque stratégie est mémorisée comme un entier naturel exprimé en base 
 $n+1$: à chaque itération, soit aucun élément n'est modifié, soit un 
 initialement. 
 Chaque stratégie est mémorisée comme un entier naturel exprimé en base 
 $n+1$: à chaque itération, soit aucun élément n'est modifié, soit un 
@@ -232,7 +232,7 @@ en commençant à $x$.
 Les sorties (stratégies et configurations) sont mémorisées 
 selon les mêmes règles.
 
 Les sorties (stratégies et configurations) sont mémorisées 
 selon les mêmes règles.
 
-Concentrons nous sur la complexité du problèmew.
+Concentrons nous sur la complexité du problème.
 Chaque entrée, de l'entrée-sortie de l'outil est un triplet 
 composé d'une configuration $x$, d'un extrait  $S$ de la stratégie à 
 itérer de taille $l \in \llbracket 2, k\rrbracket$ et d'un nombre $m \in  \llbracket 1, l-1\rrbracket$ d'itérations à exécuter.
 Chaque entrée, de l'entrée-sortie de l'outil est un triplet 
 composé d'une configuration $x$, d'un extrait  $S$ de la stratégie à 
 itérer de taille $l \in \llbracket 2, k\rrbracket$ et d'un nombre $m \in  \llbracket 1, l-1\rrbracket$ d'itérations à exécuter.
@@ -256,19 +256,19 @@ $$
 2^n \times \left(\dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2}\right) \enspace .
 $$
 Par exemple, pour $4$   éléments binaires et une stratégie d'au plus 
 2^n \times \left(\dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2}\right) \enspace .
 $$
 Par exemple, pour $4$   éléments binaires et une stratégie d'au plus 
-$3$~termes on obtient 2304 couples d'entrée-sorties.
+$3$~termes on obtient 2304 couples d'entrée-sortie.
 
 \subsection{Expérimentations}
 \label{section:experiments}
 
 \subsection{Expérimentations}
 \label{section:experiments}
-On se focalise dans cette section sur l'entraînement d'un perceptron 
-multi-couche pour apprendre des itérations chaotiques. Ce type de réseau
+On se focalise dans cette section sur l'entraînement d'un Perceptron 
+multi-couches pour apprendre des itérations chaotiques. Ce type de réseau
 ayant déjà été évalué avec succès dans la prédiction de 
 séries chaotiques temporelles. En effet, les auteurs de~\cite{dalkiran10} 
 ont montré qu'un MLP pouvait apprendre la dynamique du circuit de Chua.
 Ce réseau avec rétropropagation est composé de  deux couches 
 ayant déjà été évalué avec succès dans la prédiction de 
 séries chaotiques temporelles. En effet, les auteurs de~\cite{dalkiran10} 
 ont montré qu'un MLP pouvait apprendre la dynamique du circuit de Chua.
 Ce réseau avec rétropropagation est composé de  deux couches 
-et entrainé à l'aide d'une  propagation arrière Bayesienne.
+et entraîné à l'aide d'une  propagation arrière Bayesienne.
 
 
-Le choix de l'achitecture du réseau ainsi que de la méthode d'apprentissage 
+Le choix de l'architecture du réseau ainsi que de la méthode d'apprentissage 
 ont été détaillé dans~\cite{bcgs12:ij}.
 En pratique, nous avons considéré des configurations de
 quatre éléments booléens 
 ont été détaillé dans~\cite{bcgs12:ij}.
 En pratique, nous avons considéré des configurations de
 quatre éléments booléens 
@@ -379,15 +379,15 @@ que ceux qui le sont. Ceci est est illustré au travers des
 figures~\ref{Fig:chaotic_predictions} et~\ref{Fig:non-chaotic_predictions}.
 De plus, comme dans le codage précédent, les stratégies ne peuvent pas être 
 prédites.  
 figures~\ref{Fig:chaotic_predictions} et~\ref{Fig:non-chaotic_predictions}.
 De plus, comme dans le codage précédent, les stratégies ne peuvent pas être 
 prédites.  
-On constate que ce second codage réduit certe le nombre de sorties, mais est 
+On constate que ce second codage réduit certes le nombre de sorties, mais est 
 largement moins performant que le premier.
 On peut expliquer ceci par le fait
 que ce second codage garantit que deux entiers successifs correspondent 
 largement moins performant que le premier.
 On peut expliquer ceci par le fait
 que ce second codage garantit que deux entiers successifs correspondent 
-à deux configurations voisines, \textit{ie.e}, qui ne diffèrent que d'un 
+à deux configurations voisines, \textit{i.e.}, qui ne diffèrent que d'un 
 élément.
 La réciproque n'est cependant pas établie et deux configurations voisines
 élément.
 La réciproque n'est cependant pas établie et deux configurations voisines
-peuvent être traduitent par des entiers très éloignés et ainsi difficil
-àapprendre. 
+peuvent être traduites par des entiers très éloignés et ainsi difficile
+ à apprendre. 
 
 
 \begin{figure}[ht]
 
 
 \begin{figure}[ht]
@@ -415,8 +415,8 @@ peuvent être traduitent par des entiers très éloignés et ainsi difficils
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
-Dans ce chapitre, nous avons établi une simlilitude entre les itérations 
-chaotiques et une famille  de perceptrons multicouches.
+Dans ce chapitre, nous avons établi une similitude entre les itérations 
+chaotiques et une famille  de Perceptrons multi-couches.
 Nous avons d'abord montré comment  construire un réseau de neurones 
 ayant un comportement chaotique.
 Nous avons présenté ensuite comment vérifier si un réseau de neurones 
 Nous avons d'abord montré comment  construire un réseau de neurones 
 ayant un comportement chaotique.
 Nous avons présenté ensuite comment vérifier si un réseau de neurones 
index 0b24636263588e3ec9a4fb3386f96ae18e67a10f..e4a283ced2a062664ec20595b6bc44f4992ee234 100644 (file)
@@ -173,7 +173,7 @@ $$
 \noindent sinon. 
 En démarrant de $x^0=00011$, le système atteint $x^1 = 01011$ et boucle entre 
 ces deux configurations. Pour une même stratégies, les itérations 
 \noindent sinon. 
 En démarrant de $x^0=00011$, le système atteint $x^1 = 01011$ et boucle entre 
 ces deux configurations. Pour une même stratégies, les itérations 
-asynhrones divergent alors que les synchrones convergent.
+asynchrones divergent alors que les synchrones convergent.
 Les sections suivantes de ce chapitre montrent comment résoudre ce problème.
 
 \subsection{Itérations Mixes}
 Les sections suivantes de ce chapitre montrent comment résoudre ce problème.
 
 \subsection{Itérations Mixes}
index 0ee325e983bd57dad526773921887ad7f1eca8a2..191941605c1da2ba65fcc9ddff3a7e7223eb2c60 100644 (file)
@@ -26,7 +26,7 @@ donné par l'outil.
 Cependant, même pour des réseaux discrets à peu d'éléments, 
 le nombre de configurations induites explose rapidement.
 Les \emph{Model-Checkers}~\cite{Hol03,nusmv02,Blast07,MCErlang07,Bogor03}  
 Cependant, même pour des réseaux discrets à peu d'éléments, 
 le nombre de configurations induites explose rapidement.
 Les \emph{Model-Checkers}~\cite{Hol03,nusmv02,Blast07,MCErlang07,Bogor03}  
-sont des classes d'outils qui addressent le problème de vérifier automatiquement
+sont des classes d'outils qui adressent le problème de vérifier automatiquement
 qu'un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion 
 combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction,
 de quotientage selon une relation d'équivalence.
 qu'un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion 
 combinatoire, ces outils appliquent des méthodes d'ordre partiel, d'abstraction,
 de quotientage selon une relation d'équivalence.
@@ -79,7 +79,7 @@ sont ensuite fournies (\Sec{sec:spin:practical}).
 
 \begin{xpl}
   On considère un exemple à trois éléments dans $\Bool$. 
 
 \begin{xpl}
   On considère un exemple à trois éléments dans $\Bool$. 
-  Chaque configuration est ainsi un élement de $\Bool^3$, \textit{i.e.}, 
+  Chaque configuration est ainsi un élément de $\Bool^3$, \textit{i.e.}, 
   un nombre entre 0 et 7. 
   La \Fig{fig:map} précise la fonction $f$ considérée et 
   la \Fig{fig:xplgraph:inter:mc} donne son graphe d'intéraction.
   un nombre entre 0 et 7. 
   La \Fig{fig:map} précise la fonction $f$ considérée et 
   la \Fig{fig:xplgraph:inter:mc} donne son graphe d'intéraction.
@@ -300,7 +300,7 @@ active proctype scheduler(){
 }
 \end{lstlisting}
 \end{tiny}
 }
 \end{lstlisting}
 \end{tiny}
-\caption{Process scheduler pour la stratégie pseudo pérodique.
+\caption{Process scheduler pour la stratégie pseudo périodique.
  \label{fig:scheduler}}
 \end{minipage}
 \begin{minipage}[h]{.30\linewidth}
  \label{fig:scheduler}}
 \end{minipage}
 \begin{minipage}[h]{.30\linewidth}
@@ -340,7 +340,7 @@ ces notions est traduite vers un modèle PROMELA.
 \subsection{La stratégie}\label{sub:spin:strat}
 Regardons comment une stratégie pseudo périodique peut être représentée en PROMELA.
 Intuitivement, un process \verb+scheduler+ (comme représenté à la {\sc Figure}~\ref{fig:scheduler}) 
 \subsection{La stratégie}\label{sub:spin:strat}
 Regardons comment une stratégie pseudo périodique peut être représentée en PROMELA.
 Intuitivement, un process \verb+scheduler+ (comme représenté à la {\sc Figure}~\ref{fig:scheduler}) 
-est iterrativement appelé pour construire chaque $s^t$ représentant 
+est itérativement appelé pour construire chaque $s^t$ représentant 
 les éléments possiblement mis à jour à l'itération $t$.
 
 Basiquement, le process est une boucle qui est débloquée lorsque la valeur du sémaphore
 les éléments possiblement mis à jour à l'itération $t$.
 
 Basiquement, le process est une boucle qui est débloquée lorsque la valeur du sémaphore
@@ -435,7 +435,7 @@ inline F(){
 \item elle mémorise dans  \texttt{Xd} la valeurs disponible pour chaque élément  grâce à  la fonction \texttt{fetch\_values}; cette fonction est détaillée 
 dans la section suivante;
 \item  une boucle %sur les  \texttt{ar\_len} éléments qui peuvent être modifiés
 \item elle mémorise dans  \texttt{Xd} la valeurs disponible pour chaque élément  grâce à  la fonction \texttt{fetch\_values}; cette fonction est détaillée 
 dans la section suivante;
 \item  une boucle %sur les  \texttt{ar\_len} éléments qui peuvent être modifiés
-  met à jour iterrativement la valeur de $j$ (grâce à l'appel de fonction \texttt{f(j)})
+  met à jour itérativement la valeur de $j$ (grâce à l'appel de fonction \texttt{f(j)})
   pour peu que celui-ci doive être modifié,  \textit{i.e.},   pour peu qu'il soit renseigné dans
   \texttt{mods[count]}; le code source de \texttt{F} est donné en {\sc Figure}~\ref{fig:p} et est une 
   traduction directe de l'application $f$;
   pour peu que celui-ci doive être modifié,  \textit{i.e.},   pour peu qu'il soit renseigné dans
   \texttt{mods[count]}; le code source de \texttt{F} est donné en {\sc Figure}~\ref{fig:p} et est une 
   traduction directe de l'application $f$;
@@ -553,7 +553,7 @@ Il y a deux cas.
 Les valeurs des éléments sont ajoutées dans ce canal au travers de la fonction  \verb+diffuse_values+. L'objectif de cette fonction 
 est de stocker les valeurs de $x$  (représenté
 dans le modèle par \verb+Xp+) dans le canal  \verb+channels+.
 Les valeurs des éléments sont ajoutées dans ce canal au travers de la fonction  \verb+diffuse_values+. L'objectif de cette fonction 
 est de stocker les valeurs de $x$  (représenté
 dans le modèle par \verb+Xp+) dans le canal  \verb+channels+.
-Il permet au modèle-checker SPIN  d'exécuter 
+Il permet au model-checker SPIN  d'exécuter 
 le modèle PROMELA   comme s'il pouvait y avoir des délais entre processus
 Il y a deux cas différents pour la valeur de $X_{j}$:
 \begin{itemize}
 le modèle PROMELA   comme s'il pouvait y avoir des délais entre processus
 Il y a deux cas différents pour la valeur de $X_{j}$:
 \begin{itemize}
@@ -658,7 +658,7 @@ puis présente ensuite les expérimentations issues de ce travail.
   de l'exécution en SPIN de $\psi$ est bornée par $2^{m(\delta_0+1)+n(n+2)}$.
 \end{theorem}
 \begin{Proof}
   de l'exécution en SPIN de $\psi$ est bornée par $2^{m(\delta_0+1)+n(n+2)}$.
 \end{theorem}
 \begin{Proof}
-  Une configuration est une valuation des variables globales.
+  Une configuration est une évaluation des variables globales.
   Leur nombre ne dépend que de celles qui ne sont pas constantes.
 
   Les  variables  \verb+Xp+ et \verb+X+ engendrent  $2^{2n}$ états.
   Leur nombre ne dépend que de celles qui ne sont pas constantes.
 
   Les  variables  \verb+Xp+ et \verb+X+ engendrent  $2^{2n}$ états.
diff --git a/sdd.tex b/sdd.tex
index 83bee0617d249c91af5edefcecca0c54bc399ed3..355e33c119cc87c89289384c67b69d505cdadf4d 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -332,7 +332,7 @@ les uns par rapport aux autres. Cette matrice est nommée
 
 \begin{theorem}
 Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, 
 
 \begin{theorem}
 Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, 
-$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e}, 
+$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e.}, 
 $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 \end{theorem} 
 
 $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 \end{theorem}