]> AND Private Git Repository - hdrcouchot.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
expe ANN
authorcouchot <jf.couchot@gmail.com>
Thu, 25 Jun 2015 20:31:46 +0000 (22:31 +0200)
committercouchot <jf.couchot@gmail.com>
Thu, 25 Jun 2015 20:31:46 +0000 (22:31 +0200)
chaosANN.tex
main.pdf

index cb1ce2a0a649cc03911b446a86d702eefa3a419f..22d5258134aa457f6a65b4edd2cc0e38a53d6ba8 100644 (file)
@@ -198,77 +198,75 @@ tandis que le graphe $\textsc{giu}(g)$ l'est.
 L'entrée du réseau est une paire de la forme 
 $(x,(S^t)^{t  \in  \Nats})$ et sa sortie correspondante est
 de la forme  $\left(F_{h_u}(S^0,x), \sigma((S^t)^{t          \in
-  \Nats})\right)$ comme définie à l'équationà l'équation~(\ref{eq:sch:unaire}).
-
-
-
-Firstly, let us focus on how to memorize configurations.  Two distinct
-translations are  proposed.  In the first  case, we take  one input in
-$\Bool$  per  component;  in   the  second  case,  configurations  are
-memorized  as   natural  numbers.    A  coarse  attempt   to  memorize
-configuration  as  natural  number  could  consist  in  labeling  each
-configuration  with  its  translation  into  decimal  numeral  system.
-However,  such a  representation induces  too many  changes  between a
-configuration  labeled by  a  power  of two  and  its direct  previous
-configuration: for instance, 16~(10000)  and 15~(01111) are close in a
-decimal ordering, but  their Hamming distance is 5.   This is why Gray
-codes~\cite{Gray47} have been preferred.
-
-Secondly, let us detail how to deal with strategies.  Obviously, it is
-not possible to  translate in a finite way  an infinite strategy, even
-if both $(S^t)^{t \in \Nats}$ and $\sigma((S^t)^{t \in \Nats})$ belong
-to  $\{1,\ldots,n\}^{\Nats}$.  Input  strategies are  then  reduced to
-have a length of size $l \in \llbracket 2,k\rrbracket$, where $k$ is a
-parameter of the evaluation. Notice  that $l$ is greater than or equal
-to $2$ since  we do not want the shift  $\sigma$~function to return an
-empty strategy.  Strategies are memorized as natural numbers expressed
-in base  $n+1$.  At  each iteration, either  none or one  component is
-modified  (among the  $n$ components)  leading to  a radix  with $n+1$
-entries.  Finally,  we give an  other input, namely $m  \in \llbracket
-1,l-1\rrbracket$, which  is the  number of successive  iterations that
-are applied starting  from $x$.  Outputs are translated  with the same
-rules.
-
-To address  the complexity  issue of the  problem, let us  compute the
-size of the data set an ANN has to deal with.  Each input vector of an
-input-output pair  is composed of a configuration~$x$,  an excerpt $S$
-of the strategy to iterate  of size $l \in \llbracket 2, k\rrbracket$,
-and a  number $m \in  \llbracket 1, l-1\rrbracket$ of  iterations that
-are executed.
-
-Firstly, there are $2^n$  configurations $x$, with $n^l$ strategies of
-size $l$ for  each of them. Secondly, for  a given configuration there
-are $\omega = 1 \times n^2 +  2 \times n^3 + \ldots+ (k-1) \times n^k$
-ways  of writing  the pair  $(m,S)$. Furthermore,  it is  not  hard to
-establish that
+  \Nats})\right)$ comme définie à l'équation~(\ref{eq:sch:unaire}).
+
+On s'intéresse d'abord aux différentes manières de  
+mémoriser des configurations. On en considère deux principalement.
+Dans le premier cas, on considère une entrée booléenne par élément
+tandis que dans le second cas, les configurations  sont mémorisées comme 
+des entiers naturels. Dans ce dernier cas, une approche naïve pourrait 
+consister à attribuer à chaque configuration de $\Bool^n$ 
+l'entier naturel naturel correspondant.
+Cependant, une telle représentation rapproche 
+arbitrairement des configurations diamétralement
+opposées dans le $n$-cube comme  une puissance de
+deux et la configuration immédiatement précédente: 10000 serait modélisée 
+par 16 et  et 01111 par 15 alros que leur distance de Hamming est 15.
+De manière similaire, ce codage éloigne des configurations qui sont 
+très proches: par exemple 10000 et 00000 ont une distance de Hamming 
+de 1 et sont respectivement représentées par 16 et 0.
+Pour ces raisons, le codage retenu est celui des codes de Gray~\cite{Gray47}.
+
+Concentrons nous sur la traduction de la stratégie.
+Il n'est naturellement pas possible de traduire une stragtégie 
+infinie quelconque à l'aide d'un nombre fini d'éléments.
+On se restreint donc à des stratégies de taille 
+$l \in \llbracket 2,k\rrbracket$, où $k$ est un parametre défini
+initialement. 
+Chaque stratégie est mémorisée comme un entier naturel exprimé en base 
+$n+1$: à chaque itération, soit aucun élément n'est modifié, soit un 
+élément l'est. 
+Enfin, on donne une dernière entrée: $m  \in \llbracket
+1,l-1\rrbracket$, qui est le nombre d'itérations successives que l'on applique 
+en commençant à $x$. 
+Les sorties (stratégies et configurations) sont mémorisées 
+selon les mêmes règles.
+
+Concentrons nous sur la complexité du problèmew.
+Chaque entrée, de l'entrée-sortie de l'outil est un triplet 
+composé d'une configuration $x$, d'un extrait  $S$ de la stratégie à 
+itérer de taille $l \in \llbracket 2, k\rrbracket$ et d'un nombre $m \in  \llbracket 1, l-1\rrbracket$ d'itérations à exécuter.
+Il y a  $2^n$  configurations $x$ et  $n^l$ stratégies de
+taille $l$. 
+De plus, pour une  configuration donnée, il y a 
+$\omega = 1 \times n^2 +  2 \times n^3 + \ldots+ (k-1) \times n^k$
+manières d'écrire le couple $(m,S)$. Il n'est pas difficile d'établir que 
 \begin{equation}
 \displaystyle{(n-1) \times \omega = (k-1)\times n^{k+1} - \sum_{i=2}^k n^i} \nonumber
 \end{equation}
-then
+donc
 \begin{equation}
 \omega =
 \dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2} \enspace . \nonumber
 \end{equation}
-\noindent And then, finally, the number of  input-output pairs for our 
-ANNs is 
+\noindent
+Ainsi le nombre de paire d'entrée-sortie pour les réseaux de neurones considérés
+est 
 $$
 2^n \times \left(\dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2}\right) \enspace .
 $$
-For  instance, for $4$  binary components  and a  strategy of  at most
-$3$~terms we obtain 2304~input-output pairs.
+Par exemple, pour $4$   éléments binaires et une stratégie d'au plus 
+$3$~termes on obtient 2304 couples d'entrée-sorties.
 
-\subsection{Experiments}
+\subsection{Expérimentations}
 \label{section:experiments}
-
-To study  if chaotic iterations can  be predicted, we  choose to train
-the multilayer perceptron.  As stated  before, this kind of network is
-in  particular  well-known for  its  universal approximation  property
-\cite{Cybenko89,DBLP:journals/nn/HornikSW89}.  Furthermore,  MLPs have
-been  already  considered for  chaotic  time  series prediction.   For
-example,   in~\cite{dalkiran10}  the   authors  have   shown   that  a
-feedforward  MLP with  two hidden  layers, and  trained  with Bayesian
-Regulation  back-propagation, can learn  successfully the  dynamics of
-Chua's circuit.
+On se focalise dans cette section sur l'entraînement d'un perceptron 
+multi-couche pour apprendre des itérations chaotiques. Ce type de réseau
+ayant déjà été évalué avec succès dans la prédiction de 
+séries chaotiques temporelles. En effet, les auteurs de~\cite{dalkiran10} 
+ont montré qu'un MLP pouvait apprendre la dynamique du circuit de Chua.
+Ce réseau avec rétropropagation est composé de  deux couches 
+et entrainé à l'aide d'une  propagation arrière Bayesienne.
 
 In  these experiments  we consider  MLPs  having one  hidden layer  of
 sigmoidal  neurons  and  output   neurons  with  a  linear  activation
index 9d028a2d87f0b66989be544694332d9da8a32770..a12c2b1a50c97e4d0a95d5d276ef11f9000bc191 100644 (file)
Binary files a/main.pdf and b/main.pdf differ