+
+
+
+
+
+\subsection{A metric on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
+
+We define a distance $d$ on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ as follows.
+Consider
+$x=(e,s)$ and $\check{x}=(\check{e},\check{s})$ in
+$\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}} $,
+where $s=(u,v)$ and $\check{s}=(\check{u},\check{v})$ are in $ \mathds{S}_{\mathsf{N},\mathcal{P}} =
+\mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$.
+\begin{itemize}
+\item $e$ and $\check{e}$ are integers belonging in $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
+on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
+part of $d(X,\check{X})$.
+\item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
+between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by
+ differences between $v^1$ and $\check{v}^1$, followed by the differences
+between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
+More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
+\begin{itemize}
+\item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
+\item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
+digits are $|u^0-\check{u}^0|$. They are followed by
+$|u^1-\check{u}^1|$ written with $n$ digits, etc.
+\begin{itemize}
+\item If
+$v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
+part of $d(X,\check{X})$ is completed by 0's until reaching
+$p+n\times \max{(\mathcal{P})}$ digits.
+\item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$ blocs of $n$
+digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
+$\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
+\item The case $v^0>\check{v}^0$ is dealt similarly.
+\end{itemize}
+\item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
+\end{itemize}
+\end{itemize}
+
+
+
+
+\begin{xpl}
+Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that
+$s=\left\{
+\begin{array}{l}
+u=\underline{6,} ~ \underline{11,5}, ...\\
+v=1,2,...
+\end{array}
+\right.$
+while
+$\check{s}=\left\{
+\begin{array}{l}
+\check{u}=\underline{6,4} ~ \underline{1}, ...\\
+\check{v}=2,1,...
+\end{array}
+\right.$.
+
+So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
+Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
+and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
+at most $\max{(\mathcal{P})}$ times, we must complete this
+value by some 0's in such a way that the obtained result
+has $n\times \max{(\mathcal{P})}=22$ digits, that is:
+0600000000000000000000. Similarly, the $\check{v}^0=2$ first
+terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
+difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
+we start again with the remainder of the sequences.
+\end{xpl}
+
+
+\begin{xpl}
+Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
+
+$s=\left\{
+\begin{array}{l}
+u=\underline{6,7,} ~ \underline{4,2,} ...\\
+v=2,2,...
+\end{array}
+\right.$
+while
+$\check{s}=\left\{
+\begin{array}{l}
+\check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
+\check{v}=7,2,...
+\end{array}
+\right.$
+
+So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
+and $|9800000-4200000| = 5600000$.
+\end{xpl}
+
+
+
+$d$ can be more rigorously written as follows:
+$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
+where: % $p=\max \mathcal{P}$ and:
+\begin{itemize}
+\item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
+\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline
+$$\begin{array}{rcl}
+ d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
+ \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}}
+ \bigg(|v^k - \check{v}^k| \\
+ & & + \left| \sum_{l=0}^{v^k-1}
+ \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
+ \sum_{l=0}^{\check{v}^k-1}
+ \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
+\end{array}
+$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
+\end{itemize}
+
+
+Let us show that,
+\begin{prpstn}
+$d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
+\end{prpstn}
+
+
+\begin{proof}
+ $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance. We will prove that
+ $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ is a distance
+too, thus $d$ will also be a distance, being the sum of two distances.
+ \begin{itemize}
+\item Obviously, $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})\geqslant 0$, and if $s=\check{s}$, then
+$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$. Conversely, if $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, then
+$\forall k \in \mathds{N}, v^k=\check{v}^k$ due to the
+definition of $d$. Then, as digits between positions $p+1$ and $p+n$ are null and correspond to $|u^0-\check{u}^0|$, we can conclude that $u^0=\check{u}^0$. An extension of this result to the whole first $n \times \max{(\mathcal{P})}$ bloc leads to $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, and by checking all the $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
+ \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ is clearly symmetric
+($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$).
+\item The triangle inequality is obtained because the absolute value satisfies it too.
+ \end{itemize}
+\end{proof}
+
+
+Before being able to study the topological behavior of the general
+chaotic iterations, we must first establish that:
+
+\begin{prpstn}
+ For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on
+$\left( \mathcal{X},d\right)$.
+\end{prpstn}
+
+
+\begin{proof}
+We will show this result by using the sequential continuity. Consider a
+sequence $x^n=(e^n,(u^n,v^n)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}^\mathds{N}$ such
+that $d(x^n,x) \longrightarrow 0$, for some $x=(e,(u,v))\in
+\mathcal{X}_{\mathsf{N},\mathcal{P}}$. We will show that
+$d\left(G_f(x^n),G_f(x)\right) \longrightarrow 0$.
+Remark that $u$ and $v$ are sequences of sequences.
+
+As $d(x^n,x) \longrightarrow 0$, there exists
+$n_0\in\mathds{N}$ such that
+$d(x^n,x) < 10^{-(p+n \max{(\mathcal{P})})}$
+(its $p+n \max{(\mathcal{P})}$ first digits are null).
+In particular, $\forall n \geqslant n_0, e^n=e$,
+as the Hamming distance between the integral parts of
+$x$ and $\check{x}$ is 0. Similarly, due to the nullity
+of the $p+n \max{(\mathcal{P})}$ first digits of
+$d(x^n,x)$, we can conclude that $\forall n \geqslant n_0$,
+$(v^n)^0=v^0$, and that $\forall n \geqslant n_0$,
+$(u^n)^0=u^0$, $(u^n)^1=u^1$, ..., $(u^n)^{v^0-1}=u^{v^0-1}$.
+This implies that:
+\begin{itemize}
+\item $G_f(x^n)_1=G_f(x)_1$: they have the same
+Boolean vector as first coordinate.
+\item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\Sigma (u^n,v^n); \Sigma(u,v)) = 10^{p+n \max{(\mathcal{P})}} d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u^n,v^n); (u,v))$. As the right part of the equality tends
+to 0, we can deduce that it is the case too for the left part of the equality, and so
+$G_f(x^n)_2$ is convergent to $G_f(x)_2$.
+\end{itemize}
+\end{proof}
+
+
+
+\subsection{$\Gamma_{\mathcal{P}}(f)$ as an extension of $\Gamma(f)$}
+
+Let $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$.
+We define the directed graph $\Gamma_{\mathcal{P}}(f)$ as follows.
+\begin{itemize}
+\item Its vertices are the $2^\mathsf{N}$ elements of $\mathds{B}^\mathsf{N}$.
+\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples
+ having their elements in $\llbracket 1, \mathsf{N} \rrbracket $.
+\item There is an arc labeled $u_0, \hdots, u_{p_i-1}$, $i \in \llbracket 1, \mathsf{p} \rrbracket$ between vertices $x$ and $y$ if and only if
+$y=F_{f,p_i} (x, (u_0, \hdots, u_{p_i-1})) $.
+\end{itemize}
+
+It is not hard to see that the graph $\Gamma_{\{1\}}(f)$ is
+$\Gamma(f)$.
+
+\begin{figure}[ht]
+ \centering
+ \begin{subfigure}[b]{0.45\textwidth}
+ \centering
+ \includegraphics[scale=0.85]{graphe1.pdf}
+ \caption{$\Gamma(f_0)$}
+ \label{graphe1}
+ \end{subfigure}%
+ ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
+ % (or a blank line to force the subfigure onto a new line)
+ \begin{subfigure}[b]{0.3\textwidth}
+ \centering
+ \includegraphics[scale=0.85]{graphe2.pdf}
+ \caption{$\Gamma_{\{2,3\}}(f_0)$}
+ \label{graphe2}
+ \end{subfigure}
+ ~ %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
+ \caption{Iterating $f_0:(x_1,x_2) \mapsto (\overline{x_1}, \overline{x_2})$}
+ \label{fig:itg}
+\end{figure}
+
+
+\begin{xpl}
+Consider for instance $\mathsf{N}=2$,
+Let $f_0:\mathds{B}^2 \longrightarrow \mathds{B}^2$ be the negation function,
+\textit{i.e.}, $f_0(x_1,x_2) = (\overline{x_1}, \overline{x_2})$, and consider
+$\mathcal{P}=\{2,3\}$. The graphs of iterations are given in
+\textsc{Figure~\ref{fig:itg}}.
+The \textsc{Figure~\ref{graphe1}} shows what happens when
+displaying each iteration result.
+On the contrary, the \textsc{Figure~\ref{graphe2}} explicits the behaviors
+when always applying 2 or 3 modification and next outputing results.
+Notice that here, orientations of arcs are not necessary
+since the function $f_0$ is equal to its inverse $f_0^{-1}$.
+\end{xpl}
+
+\subsection{Proofs of chaos}
+
+We will show that,
+\begin{prpstn}
+\label{prop:trans}
+ $\Gamma_{\mathcal{P}}(f)$ is strongly connected if and only if $G_f$ is
+topologically transitive on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$.
+\end{prpstn}
+
+
+\begin{proof}
+Suppose that $\Gamma_{\mathcal{P}}(f)$ is strongly connected.
+Let $x=(e,(u,v)),\check{x}=(\check{e},(\check{u},\check{v}))
+\in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$.
+We will find a point $y$ in the open ball $\mathcal{B}(x,\varepsilon )$ and
+$n_0 \in \mathds{N}$ such that $G_f^{n_0}(y)=\check{x}$: this strong transitivity
+will imply the transitivity property.
+We can suppose that $\varepsilon <1$ without loss of generality.
+
+Let us denote by $(E,(U,V))$ the elements of $y$. As
+$y$ must be in $\mathcal{B}(x,\varepsilon)$ and $\varepsilon < 1$,
+$E$ must be equal to $e$. Let $k=\lfloor \log_{10} (\varepsilon) \rfloor +1$.
+$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ must be lower than
+$\varepsilon$, so the $k$ first digits of the fractional part of
+$d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))$ are null.
+Let $k_1$ the smallest integer such that, if $V^0=v^0$, ..., $V^{k_1}=v^{k_1}$,
+ $U^0=u^0$, ..., $U^{\sum_{l=0}^{k_1}V^l-1} = u^{\sum_{l=0}^{k_1}v^l-1}$.
+Then $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}((u,v),(U,V))<\varepsilon$.
+In other words, any $y$ of the form $(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}),
+(v^0, ..., v^{k_1}))$ is in $\mathcal{B}(x,\varepsilon)$.
+
+Let $y^0$ such a point and $z=G_f^{k_1}(y^0) = (e',(u',v'))$. $\Gamma_{\mathcal{P}}(f)$
+being strongly connected, there is a path between $e'$ and $\check{e}$. Denote
+by $a_0, \hdots, a_{k_2}$ the edges visited by this path. We denote by
+$V^{k_1}=|a_0|$ (number of terms in the finite sequence $a_1$),
+$V^{k_1+1}=|a_1|$, ..., $V^{k_1+k_2}=|a_{k_2}|$, and by
+$U^{k_1}=a_0^0$, $U^{k_1+1}=a_0^1$, ..., $U^{k_1+V_{k_1}-1}=a_0^{V_{k_1}-1}$,
+$U^{k_1+V_{k_1}}=a_1^{0}$, $U^{k_1+V_{k_1}+1}=a_1^{1}$,...
+
+Let $y=(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}, a_0^0, ..., a_0^{|a_0|}, a_1^0, ..., a_1^{|a_1|},...,
+ a_{k_2}^0, ..., a_{k_2}^{|a_{k_2}|},$ \linebreak
+ $\check{u}^0, \check{u}^1, ...),(v^0, ..., v^{k_1},|a_0|, ...,
+ |a_{k_2}|,\check{v}^0, \check{v}^1, ...)))$. So $y\in \mathcal{B}(x,\varepsilon)$
+ and $G_{f}^{k_1+k_2}(y)=\check{x}$.
+
+
+Conversely, if $\Gamma_{\mathcal{P}}(f)$ is not strongly connected, then there are
+2 vertices $e_1$ and $e_2$ such that there is no path between $e_1$ and $e_2$.
+That is, it is impossible to find $(u,v)\in \mathds{S}_{\mathsf{N},\mathcal{P}}$
+and $n \mathds{N}$ such that $G_f^n(e,(u,v))_1=e_2$. The open ball $\mathcal{B}(e_2, 1/2)$
+cannot be reached from any neighborhood of $e_1$, and thus $G_f$ is not transitive.
+\end{proof}
+
+
+We show now that,
+\begin{prpstn}
+If $\Gamma_{\mathcal{P}}(f)$ is strongly connected, then $G_f$ is
+regular on $(\mathcal{X}_{\mathsf{N},\mathcal{P}}, d)$.
+\end{prpstn}
+
+\begin{proof}
+Let $x=(e,(u,v)) \in \mathcal{X}_{\mathsf{N},\mathcal{P}}$ and $\varepsilon >0$.
+As in the proofs of Prop.~\ref{prop:trans}, let $k_1 \in \mathds{N}$ such
+that
+$$\left\{(e, ((u^0, ..., u^{v^{k_1-1}},U^0, U^1, ...),(v^0, ..., v^{k_1},V^0, V^1, ...)) \mid \right.$$
+$$\left.\forall i,j \in \mathds{N}, U^i \in \llbracket 1, \mathsf{N} \rrbracket, V^j \in \mathcal{P}\right\}
+\subset \mathcal{B}(x,\varepsilon),$$
+and $y=G_f^{k_1}(e,(u,v))$. $\Gamma_{\mathcal{P}}(f)$ being strongly connected,
+there is at least a path from the Boolean state $y_1$ of $y$ and $e$.
+Denote by $a_0, \hdots, a_{k_2}$ the edges of such a path.
+Then the point:
+$$(e,((u^0, ..., u^{v^{k_1-1}},a_0^0, ..., a_0^{|a_0|}, a_1^0, ..., a_1^{|a_1|},...,
+ a_{k_2}^0, ..., a_{k_2}^{|a_{k_2}|},u^0, ..., u^{v^{k_1-1}},$$
+$$a_0^0, ...,a_{k_2}^{|a_{k_2}|}...),(v^0, ..., v^{k_1}, |a_0|, ..., |a_{k_2}|,v^0, ..., v^{k_1}, |a_0|, ..., |a_{k_2}|,...))$$
+is a periodic point in the neighborhood $\mathcal{B}(x,\varepsilon)$ of $x$.
+\end{proof}
+
+$G_f$ being topologically transitive and regular, we can thus conclude that
+\begin{thrm}
+The function $G_f$ is chaotic on $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ if
+and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected.
+\end{thrm}
+
+\begin{crllr}
+ The pseudorandom number generator $\chi_{\textit{14Secrypt}}$ is not chaotic
+ on $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ for the negation function.
+\end{crllr}
+\begin{proof}
+ In this context, $\mathcal{P}$ is the singleton $\{b\}$.
+ If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach
+ its neighborhood and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected.
+ If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself
+ and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected.
+\end{proof}
+
+The next section shows how to generate functions and a iteration number $b$
+such that $\Gamma_{\{b\}}$ is strongly connected.
+
+
+
\ No newline at end of file