]> AND Private Git Repository - hpcc2014.git/blob - hpcc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif intro
[hpcc2014.git] / hpcc.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage{amsfonts,amssymb}
6 \usepackage{amsmath}
7 %\usepackage{algorithm}
8 \usepackage{algpseudocode}
9 %\usepackage{amsthm}
10 \usepackage{graphicx}
11 \usepackage[american]{babel}
12 % Extension pour les liens intra-documents (tagged PDF)
13 % et l'affichage correct des URL (commande \url{http://example.com})
14 %\usepackage{hyperref}
15
16 \usepackage{url}
17 \DeclareUrlCommand\email{\urlstyle{same}}
18
19 \usepackage[autolanguage,np]{numprint}
20 \AtBeginDocument{%
21   \renewcommand*\npunitcommand[1]{\text{#1}}
22   \npthousandthpartsep{}}
23
24 \usepackage{xspace}
25 \usepackage[textsize=footnotesize]{todonotes}
26 \newcommand{\AG}[2][inline]{%
27   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
28 \newcommand{\DL}[2][inline]{%
29   \todo[color=yellow!50,#1]{\sffamily\textbf{DL:} #2}\xspace}
30 \newcommand{\LZK}[2][inline]{%
31   \todo[color=blue!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
32 \newcommand{\RC}[2][inline]{%
33   \todo[color=red!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
34 \newcommand{\CER}[2][inline]{%
35   \todo[color=pink!10,#1]{\sffamily\textbf{CER:} #2}\xspace}
36
37 \algnewcommand\algorithmicinput{\textbf{Input:}}
38 \algnewcommand\Input{\item[\algorithmicinput]}
39
40 \algnewcommand\algorithmicoutput{\textbf{Output:}}
41 \algnewcommand\Output{\item[\algorithmicoutput]}
42
43 \newcommand{\MI}{\mathit{MaxIter}}
44 \newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
45
46 \begin{document}
47
48 \title{Simulation of Asynchronous Iterative Algorithms Using SimGrid}
49
50 \author{%
51   \IEEEauthorblockN{%
52     Charles Emile Ramamonjisoa\IEEEauthorrefmark{1},
53     Lilia Ziane Khodja\IEEEauthorrefmark{2},
54     David Laiymani\IEEEauthorrefmark{1},
55     Arnaud Giersch\IEEEauthorrefmark{1} and
56     Raphaël Couturier\IEEEauthorrefmark{1}
57   }
58   \IEEEauthorblockA{\IEEEauthorrefmark{1}%
59     Femto-ST Institute -- DISC Department\\
60     Université de Franche-Comté,
61     IUT de Belfort-Montbéliard\\
62     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
63     Email: \email{{charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr}
64   }
65   \IEEEauthorblockA{\IEEEauthorrefmark{2}%
66     Inria Bordeaux Sud-Ouest\\
67     200 avenue de la Vieille Tour, 33405 Talence cedex, France \\
68     Email: \email{lilia.ziane@inria.fr}
69   }
70 }
71
72 \maketitle
73
74 \begin{abstract}
75
76 Synchronous  iterative  algorithms  are  often less  scalable  than  asynchronous
77 iterative  ones.  Performing  large  scale experiments  with  different kind  of
78 network parameters is not easy  because with supercomputers such parameters are
79 fixed. So one  solution consists in using simulations first  in order to analyze
80 what parameters  could influence or not  the behaviors of an  algorithm. In this
81 paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
82 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
83 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
84 simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
85 codes. Simulations allow us to see when the multisplitting algorithm can be more
86 efficient than the GMRES one to solve a 3D Poisson problem.
87
88
89 % no keywords for IEEE conferences
90 % Keywords: Algorithm distributed iterative asynchronous simulation SimGrid
91 \end{abstract}
92
93 \section{Introduction}
94
95 Parallel computing and high performance computing (HPC) are becoming  more and more imperative for solving various
96 problems raised by  researchers on various scientific disciplines but also by industrial in  the field. Indeed, the
97 increasing complexity of these requested  applications combined with a continuous increase of their sizes lead to  write
98 distributed and parallel algorithms requiring significant hardware  resources (grid computing, clusters, broadband
99 network, etc.) but also a non-negligible CPU execution time. We consider in this paper a class of highly efficient
100 parallel algorithms called \emph{iterative algorithms} executed in a distributed environment. As their name
101 suggests, these algorithms solve a given problem by successive iterations ($X_{n +1} = f(X_{n})$) from an initial value
102 $X_{0}$ to find an approximate value $X^*$ of the solution with a very low residual error. Several well-known methods
103 demonstrate the convergence of these algorithms~\cite{BT89,Bahi07}.
104
105 Parallelization of such algorithms generally involve the division of the problem into several \emph{blocks} that will
106 be solved in parallel on multiple processing units. The latter will communicate each intermediate results before a new
107 iteration starts and until the approximate solution is reached. These parallel  computations can be performed either in
108 \emph{synchronous} mode where a new iteration begins only when all nodes communications are completed,
109 or in \emph{asynchronous} mode where processors can continue independently with few or no synchronization points. For
110 instance in the \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model~\cite{bcvc06:ij}, local
111 computations do not need to wait for required data. Processors can then perform their iterations with the data present
112 at that time. Even if the number of iterations required before the convergence is generally greater than for the
113 synchronous case, AIAC algorithms can significantly reduce overall execution times by suppressing idle times due to
114 synchronizations especially in a grid computing context (see~\cite{Bahi07} for more details).
115
116 Parallel   (synchronous  or  asynchronous)   applications  may   have  different
117 configuration   and  deployment   requirements.    Quantifying  their   resource
118 allocation  policies and  application  scheduling algorithms  in grid  computing
119 environments under  varying load, CPU power  and network speeds  is very costly,
120 very          labor           intensive          and          very          time
121 consuming~\cite{Calheiros:2011:CTM:1951445.1951450}.     The   case    of   AIAC
122 algorithms  is  even  more problematic  since  they  are  very sensible  to  the
123 execution environment context. For instance, variations in the network bandwidth
124 (intra and inter-clusters), in the number  and the power of nodes, in the number
125 of clusters\dots{}  can lead to  very different number  of iterations and  so to
126 very  different execution times.  Then, it  appears that  the use  of simulation
127 tools  to  explore  various platform  scenarios  and  to  run large  numbers  of
128 experiments quickly can be very promising.  In this way, the use of a simulation
129 environment  to execute parallel  iterative algorithms  found some  interests in
130 reducing  the  highly  cost  of  access  to computing  resources:  (1)  for  the
131 applications development life cycle and  in code debugging (2) and in production
132 to get  results in a reasonable  execution time with  a simulated infrastructure
133 not  accessible  with physical  resources.  Indeed,  the  launch of  distributed
134 iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
135 simulated environment challenges to  find optimal configurations giving the best
136 results with a lowest residual error and in the best of execution time.
137
138 To our knowledge,  there is no existing work on the  large-scale simulation of a
139 real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
140   summarised  in two  main  points}.  First  we  give a  first  approach of  the
141 simulation  of  AIAC algorithms  using  a  simulation  tool (i.e.   the  SimGrid
142 toolkit~\cite{SimGrid}).    Second,  we   confirm  the   effectiveness   of  the
143 asynchronous  multisplitting algorithm  by  comparing its  performance with  the
144 synchronous GMRES (Generalized Minimal  Residual) \cite{ref1}.  Both these codes
145 can be  used to  solve large linear  systems. In  this paper, we  focus on  a 3D
146 Poisson  problem.  We show,  that with  minor modifications  of the  initial MPI
147 code, the SimGrid  toolkit allows us to  perform a test campaign of  a real AIAC
148 application on different computing architectures.
149 % The  simulated results  we
150 %obtained are  in line with real  results exposed in  ??\AG[]{ref?}. 
151 SimGrid  had  allowed us  to  launch the  application  from  a modest  computing
152 infrastructure  by simulating  different distributed  architectures  composed by
153 clusters  nodes interconnected by  variable speed  networks.  Parameters  of the
154 network  platforms  are   the  bandwidth  and  the  latency   of  inter  cluster
155 network. Parameters on the cluster's architecture are the number of machines and
156 the  computation power  of a  machine.  Simulations show  that the  asynchronous
157 multisplitting algorithm  can solve the  3D Poisson problem  approximately twice
158 faster than GMRES with two distant clusters.
159
160
161
162 This article is structured as follows: after this introduction, the next section
163 will  give a  brief  description  of iterative  asynchronous  model.  Then,  the
164 simulation framework  SimGrid is presented  with the settings to  create various
165 distributed architectures.  Then, the  multisplitting method is presented, it is
166 based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
167 written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
168 MPI) is  detailed in the next  section. At last, the  simulation results carried
169 out will be presented before some concluding remarks and future works.
170  
171 \section{Motivations and scientific context}
172
173 As exposed in the introduction, parallel iterative methods are now widely used in many scientific domains. They can be
174 classified in three main classes depending on how iterations and communications are managed (for more details readers
175 can refer to~\cite{bcvc06:ij}). In the \textit{Synchronous Iterations~-- Synchronous Communications (SISC)} model data
176 are exchanged at the end of each iteration. All the processors must begin the same iteration at the same time and
177 important idle times on processors are generated. The \textit{Synchronous Iterations~-- Asynchronous Communications
178 (SIAC)} model can be compared to the previous one except that data required on another processor are sent asynchronously
179 i.e.  without stopping current computations. This technique allows to partially overlap communications by computations
180 but unfortunately, the overlapping is only partial and important idle times remain.  It is clear that, in a grid
181 computing context, where the number of computational nodes is large, heterogeneous and widely distributed, the idle
182 times generated by synchronizations are very penalizing. One way to overcome this problem is to use the
183 \textit{Asynchronous Iterations~-- Asynchronous Communications (AIAC)} model. Here, local computations do not need to
184 wait for required data. Processors can then perform their iterations with the data present at that time. Figure~\ref{fig:aiac}
185 illustrates this model where the gray blocks represent the computation phases, the white spaces the idle
186 times and the arrows the communications.
187 \AG{There are no ``white spaces'' on the figure.}
188 With this algorithmic model, the number of iterations required before the
189 convergence is generally greater than for the two former classes. But, and as detailed in~\cite{bcvc06:ij}, AIAC
190 algorithms can significantly reduce overall execution times by suppressing idle times due to synchronizations especially
191 in a grid computing context.\LZK{Répétition par rapport à l'intro}
192
193 \begin{figure}[!t]
194   \centering
195     \includegraphics[width=8cm]{AIAC.pdf}
196   \caption{The Asynchronous Iterations~-- Asynchronous Communications model}
197   \label{fig:aiac}
198 \end{figure}
199
200
201 It is very challenging to develop efficient applications for large scale,
202 heterogeneous and distributed platforms such as computing grids. Researchers and
203 engineers have to develop techniques for maximizing application performance of
204 these multi-cluster platforms, by redesigning the applications and/or by using
205 novel algorithms that can account for the composite and heterogeneous nature of
206 the platform. Unfortunately, the deployment of such applications on these very
207 large scale systems is very costly, labor intensive and time consuming. In this
208 context, it appears that the use of simulation tools to explore various platform
209 scenarios at will and to run enormous numbers of experiments quickly can be very
210 promising. Several works\dots{}
211
212 \AG{Several works\dots{} what?\\
213   Le paragraphe suivant se trouve déjà dans l'intro ?}
214 In the context of AIAC algorithms, the use of simulation tools is even more
215 relevant. Indeed, this class of applications is very sensible to the execution
216 environment context. For instance, variations in the network bandwidth (intra
217 and inter-clusters), in the number and the power of nodes, in the number of
218 clusters\dots{} can lead to very different number of iterations and so to very
219 different execution times.
220
221
222
223
224 \section{SimGrid}
225
226 SimGrid~\cite{SimGrid,casanova+legrand+quinson.2008.simgrid} is a simulation
227 framework to study the behavior of large-scale distributed systems.  As its name
228 says, it emanates from the grid computing community, but is nowadays used to
229 study grids, clouds, HPC or peer-to-peer systems.  The early versions of SimGrid
230 date from 1999, but it's still actively developed and distributed as an open
231 source software.  Today, it's one of the major generic tools in the field of
232 simulation for large-scale distributed systems.
233
234 SimGrid provides several programming interfaces: MSG to simulate Concurrent
235 Sequential Processes, SimDAG to simulate DAGs of (parallel) tasks, and SMPI to
236 run real applications written in MPI~\cite{MPI}.  Apart from the native C
237 interface, SimGrid provides bindings for the C++, Java, Lua and Ruby programming
238 languages.  SMPI is the interface that has been used for the work exposed in
239 this paper.  The SMPI interface implements about \np[\%]{80} of the MPI 2.0
240 standard~\cite{bedaride:hal-00919507}, and supports applications written in C or
241 Fortran, with little or no modifications.
242
243 Within SimGrid, the execution of a distributed application is simulated on a
244 single machine.  The application code is really executed, but some operations
245 like the communications are intercepted, and their running time is computed
246 according to the characteristics of the simulated execution platform.  The
247 description of this target platform is given as an input for the execution, by
248 the mean of an XML file.  It describes the properties of the platform, such as
249 the computing nodes with their computing power, the interconnection links with
250 their bandwidth and latency, and the routing strategy.  The simulated running
251 time of the application is computed according to these properties.
252
253 To compute the durations of the operations in the simulated world, and to take
254 into account resource sharing (e.g. bandwidth sharing between competing
255 communications), SimGrid uses a fluid model.  This allows to run relatively fast
256 simulations, while still keeping accurate
257 results~\cite{bedaride:hal-00919507,tomacs13}.  Moreover, depending on the
258 simulated application, SimGrid/SMPI allows to skip long lasting computations and
259 to only take their duration into account.  When the real computations cannot be
260 skipped, but the results have no importance for the simulation results, there is
261 also the possibility to share dynamically allocated data structures between
262 several simulated processes, and thus to reduce the whole memory consumption.
263 These two techniques can help to run simulations at a very large scale.
264
265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 \section{Simulation of the multisplitting method}
267 %Décrire le problème (algo) traité ainsi que le processus d'adaptation à SimGrid.
268 Let $Ax=b$ be a large sparse system of $n$ linear equations in $\mathbb{R}$, where $A$ is a sparse square and nonsingular matrix, $x$ is the solution vector and $b$ is the right-hand side vector. We use a multisplitting method based on the block Jacobi splitting to solve this linear system on a large scale platform composed of $L$ clusters of processors~\cite{o1985multi}. In this case, we apply a row-by-row splitting without overlapping  
269 \begin{equation*}
270   \left(\begin{array}{ccc}
271       A_{11} & \cdots & A_{1L} \\
272       \vdots & \ddots & \vdots\\
273       A_{L1} & \cdots & A_{LL}
274     \end{array} \right)
275   \times
276   \left(\begin{array}{c}
277       X_1 \\
278       \vdots\\
279       X_L
280     \end{array} \right)
281   =
282   \left(\begin{array}{c}
283       B_1 \\
284       \vdots\\
285       B_L
286     \end{array} \right)
287 \end{equation*}
288 in such a way that successive rows of matrix $A$ and both vectors $x$ and $b$
289 are assigned to one cluster, where for all $\ell,m\in\{1,\ldots,L\}$, $A_{\ell
290   m}$ is a rectangular block of $A$ of size $n_\ell\times n_m$, $X_\ell$ and
291 $B_\ell$ are sub-vectors of $x$ and $b$, respectively, of size $n_\ell$ each,
292 and $\sum_{\ell} n_\ell=\sum_{m} n_m=n$.
293
294 The multisplitting method proceeds by iteration to solve in parallel the linear system on $L$ clusters of processors, in such a way each sub-system
295 \begin{equation}
296   \label{eq:4.1}
297   \left\{
298     \begin{array}{l}
299       A_{\ell\ell}X_\ell = Y_\ell \text{, such that}\\
300       Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\ m\neq \ell}}^{L}A_{\ell m}X_m
301     \end{array}
302   \right.
303 \end{equation}
304 is solved independently by a cluster and communications are required to update
305 the right-hand side sub-vector $Y_\ell$, such that the sub-vectors $X_m$
306 represent the data dependencies between the clusters. As each sub-system
307 (\ref{eq:4.1}) is solved in parallel by a cluster of processors, our
308 multisplitting method uses an iterative method as an inner solver which is
309 easier to parallelize and more scalable than a direct method. In this work, we
310 use the parallel algorithm of GMRES method~\cite{ref1} which is one of the most
311 used iterative method by many researchers.
312
313 \begin{figure}[!t]
314   %%% IEEE instructions forbid to use an algorithm environment here, use figure
315   %%% instead
316 \begin{algorithmic}[1]
317 \Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector)
318 \Output $X_\ell$ (solution sub-vector)\medskip
319
320 \State Load $A_\ell$, $B_\ell$
321 \State Set the initial guess $x^0$
322 \For {$k=0,1,2,\ldots$ until the global convergence}
323 \State Restart outer iteration with $x^0=x^k$
324 \State Inner iteration: \Call{InnerSolver}{$x^0$, $k+1$}
325 \State\label{algo:01:send} Send shared elements of $X_\ell^{k+1}$ to neighboring clusters
326 \State\label{algo:01:recv} Receive shared elements in $\{X_m^{k+1}\}_{m\neq \ell}$
327 \EndFor
328
329 \Statex
330
331 \Function {InnerSolver}{$x^0$, $k$}
332 \State Compute local right-hand side $Y_\ell$:
333        \begin{equation*}
334          Y_\ell = B_\ell - \sum\nolimits^L_{\substack{m=1\\ m\neq \ell}}A_{\ell m}X_m^0
335        \end{equation*}
336 \State Solving sub-system $A_{\ell\ell}X_\ell^k=Y_\ell$ with the parallel GMRES method
337 \State \Return $X_\ell^k$
338 \EndFunction
339 \end{algorithmic}
340 \caption{A multisplitting solver with GMRES method}
341 \label{algo:01}
342 \end{figure}
343
344 Algorithm on Figure~\ref{algo:01} shows the main key points of the
345 multisplitting method to solve a large sparse linear system. This algorithm is
346 based on an outer-inner iteration method where the parallel synchronous GMRES
347 method is used to solve the inner iteration. It is executed in parallel by each
348 cluster of processors. For all $\ell,m\in\{1,\ldots,L\}$, the matrices and
349 vectors with the subscript $\ell$ represent the local data for cluster $\ell$,
350 while $\{A_{\ell m}\}_{m\neq \ell}$ are off-diagonal matrices of sparse matrix
351 $A$ and $\{X_m\}_{m\neq \ell}$ contain vector elements of solution $x$ shared
352 with neighboring clusters. At every outer iteration $k$, asynchronous
353 communications are performed between processors of the local cluster and those
354 of distant clusters (lines~\ref{algo:01:send} and~\ref{algo:01:recv} in
355 Figure~\ref{algo:01}). The shared vector elements of the solution $x$ are
356 exchanged by message passing using MPI non-blocking communication routines.
357
358 \begin{figure}[!t]
359 \centering
360   \includegraphics[width=60mm,keepaspectratio]{clustering}
361 \caption{Example of three clusters of processors interconnected by a virtual unidirectional ring network.}
362 \label{fig:4.1}
363 \end{figure}
364
365 The global convergence of the asynchronous multisplitting solver is detected
366 when the clusters of processors have all converged locally. We implemented the
367 global convergence detection process as follows. On each cluster a master
368 processor is designated (for example the processor with rank 1) and masters of
369 all clusters are interconnected by a virtual unidirectional ring network (see
370 Figure~\ref{fig:4.1}). During the resolution, a Boolean token circulates around
371 the virtual ring from a master processor to another until the global convergence
372 is achieved. So starting from the cluster with rank 1, each master processor $i$
373 sets the token to \textit{True} if the local convergence is achieved or to
374 \textit{False} otherwise, and sends it to master processor $i+1$. Finally, the
375 global convergence is detected when the master of cluster 1 receives from the
376 master of cluster $L$ a token set to \textit{True}. In this case, the master of
377 cluster 1 broadcasts a stop message to masters of other clusters. In this work,
378 the local convergence on each cluster $\ell$ is detected when the following
379 condition is satisfied
380 \begin{equation*}
381   (k\leq \MI) \text{ or } (\|X_\ell^k - X_\ell^{k+1}\|_{\infty}\leq\epsilon)
382 \end{equation*}
383 where $\MI$ is the maximum number of outer iterations and $\epsilon$ is the
384 tolerance threshold of the error computed between two successive local solution
385 $X_\ell^k$ and $X_\ell^{k+1}$.
386
387 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
388 We did not encounter major blocking problems when adapting the multisplitting algorithm previously described to a simulation environment like SimGrid unless some code 
389 debugging. Indeed, apart from the review of the program sequence for asynchronous exchanges between processors within a cluster or between clusters, the algorithm was executed successfully with SMPI and provided identical outputs as those obtained with direct execution under MPI. In synchronous 
390 mode, the execution of the program raised no particular issue but in asynchronous mode, the review of the sequence of MPI\_Isend, MPI\_Irecv and MPI\_Waitall instructions
391 and with the addition of the primitive MPI\_Test was needed to avoid a memory fault due to an infinite loop resulting from the non-convergence of the algorithm.
392 \CER{On voulait en fait montrer la simplicité de l'adaptation de l'algo a SimGrid. Les problèmes rencontrés décrits dans ce paragraphe concerne surtout le mode async}\LZK{OK. J'aurais préféré avoir un peu plus de détails sur l'adaptation de la version async}
393 Note here that the use of SMPI functions optimizer for memory footprint and CPU usage is not recommended knowing that one wants to get real results by simulation.
394 As mentioned, upon this adaptation, the algorithm is executed as in the real life in the simulated environment after the following minor changes. First, all declared 
395 global variables have been moved to local variables for each subroutine. In fact, global variables generate side effects arising from the concurrent access of 
396 shared memory used by threads simulating each computing unit in the SimGrid architecture. Second, the alignment of certain types of variables such as ``long int'' had
397 also to be reviewed.
398 \AG{À propos de ces problèmes d'alignement, en dire plus si ça a un intérêt, ou l'enlever.}
399  Finally, some compilation errors on MPI\_Waitall and MPI\_Finalize primitives have been fixed with the latest version of SimGrid.
400 In total, the initial MPI program running on the simulation environment SMPI gave after a very simple adaptation the same results as those obtained in a real 
401 environment. We have successfully executed the code in synchronous mode using parallel GMRES algorithm compared with our multisplitting algorithm in asynchronous mode after few modifications. 
402
403
404
405 \section{Experimental results}
406
407 When the \textit{real} application runs in the simulation environment and produces the expected results, varying the input
408 parameters and the program arguments allows us to compare outputs from the code execution. We have noticed from this
409 study that the results depend on the following parameters:  
410 \begin{itemize}
411 \item At the network level, we found that the most critical values are the
412   bandwidth and the network latency.
413 \item Hosts power (GFlops) can also influence on the results.
414 \item Finally, when submitting job batches for execution, the arguments values
415   passed to the program like the maximum number of iterations or the external
416   precision are critical. They allow to ensure not only the convergence of the
417   algorithm but also to get the main objective of the experimentation of the
418   simulation in having an execution time in asynchronous less than in
419   synchronous mode. The ratio between the execution time of asynchronous
420   compared to the synchronous mode is defined as the \emph{relative gain}. So,
421   our objective running the algorithm in SimGrid is to obtain a relative gain
422   greater than 1.
423   \AG{$t_\text{async} / t_\text{sync} > 1$, l'objectif est donc que ça dure plus
424     longtemps (que ça aille moins vite) en asynchrone qu'en synchrone ?
425     Ce n'est pas plutôt l'inverse ?}
426 \end{itemize}
427
428 A priori, obtaining a relative gain greater than 1 would be difficult in a local
429 area network configuration where the synchronous mode will take advantage on the
430 rapid exchange of information on such high-speed links. Thus, the methodology
431 adopted was to launch the application on clustered network. In this last
432 configuration, degrading the inter-cluster network performance will penalize the
433 synchronous mode allowing to get a relative gain greater than 1.  This action
434 simulates the case of distant clusters linked with long distance network like
435 Internet.
436
437 \AG{Cette partie sur le poisson 3D
438   % on sait donc que ce n'est pas une plie ou une sole (/me fatigué)
439   n'est pas à sa place.  Elle devrait être placée plus tôt.}
440 In this paper, we solve the 3D Poisson problem whose the mathematical model is 
441 \begin{equation}
442 \left\{
443 \begin{array}{l}
444 \nabla^2 u = f \text{~in~} \Omega \\
445 u =0 \text{~on~} \Gamma =\partial\Omega
446 \end{array}
447 \right.
448 \label{eq:02}
449 \end{equation}
450 where $\nabla^2$ is the Laplace operator, $f$ and $u$ are real-valued functions, and $\Omega=[0,1]^3$. The spatial discretization with a finite difference scheme reduces problem~(\ref{eq:02}) to a system of sparse linear equations. The general iteration scheme of our multisplitting method in a 3D domain using a seven point stencil could be written as 
451 \begin{equation}
452 \begin{array}{ll}
453 u^{k+1}(x,y,z)= & u^k(x,y,z) - \frac{1}{6}\times\\
454                & (u^k(x-1,y,z) + u^k(x+1,y,z) + \\
455                & u^k(x,y-1,z) + u^k(x,y+1,z) + \\
456                & u^k(x,y,z-1) + u^k(x,y,z+1)),
457 \end{array}
458 \label{eq:03}
459 \end{equation} 
460 where the iteration matrix $A$ of size $N_x\times N_y\times N_z$ of the discretized linear system is sparse, symmetric and positive definite. 
461
462 The parallel solving of the 3D Poisson problem with our multisplitting method requires a data partitioning of the problem between clusters and between processors within a cluster. We have chosen the 3D partitioning instead of the row-by-row partitioning in order to reduce the data exchanges at sub-domain boundaries. Figure~\ref{fig:4.2} shows an example of the data partitioning of the 3D Poisson problem between two clusters of processors, where each sub-problem is assigned to a processor. In this context, a processor has at most six neighbors within a cluster or in distant clusters with which it shares data at sub-domain boundaries. 
463
464 \begin{figure}[!t]
465 \centering
466   \includegraphics[width=80mm,keepaspectratio]{partition}
467 \caption{Example of the 3D data partitioning between two clusters of processors.}
468 \label{fig:4.2}
469 \end{figure}
470
471
472 As a first step, the algorithm was run on a network consisting of two clusters
473 containing 50 hosts each, totaling 100 hosts. Various combinations of the above
474 factors have provided the results shown in Table~\ref{tab.cluster.2x50} with a
475 matrix size ranging from $N_x = N_y = N_z = \text{62}$ to 171 elements or from
476 $\text{62}^\text{3} = \text{\np{238328}}$ to $\text{171}^\text{3} =
477 \text{\np{5000211}}$ entries.
478 \AG{Expliquer comment lire les tableaux.}
479
480 % use the same column width for the following three tables
481 \newlength{\mytablew}\settowidth{\mytablew}{\footnotesize\np{E-11}}
482 \newenvironment{mytable}[1]{% #1: number of columns for data
483   \renewcommand{\arraystretch}{1.3}%
484   \begin{tabular}{|>{\bfseries}r%
485                   |*{#1}{>{\centering\arraybackslash}p{\mytablew}|}}}{%
486     \end{tabular}}
487
488 \begin{table}[!t]
489   \centering
490   \caption{2 clusters, each with 50 nodes}
491   \label{tab.cluster.2x50}
492
493   \begin{mytable}{6}
494     \hline
495     bandwidth
496     & 5         & 5         & 5         & 5         & 5         & 50 \\
497     \hline
498     latency
499     & 0.02      & 0.02      & 0.02      & 0.02      & 0.02      & 0.02 \\
500     \hline
501     power
502     & 1         & 1         & 1         & 1.5       & 1.5       & 1.5 \\
503     \hline
504     size
505     & 62        & 62        & 62        & 100       & 100       & 110 \\
506     \hline
507     Prec/Eprec
508     & \np{E-5}   & \np{E-8}  & \np{E-9}  & \np{E-11} & \np{E-11} & \np{E-11} \\
509     \hline
510     \hline
511     Relative gain
512     & 2.52     & 2.55     & 2.52     & 2.57     & 2.54     & 2.53 \\
513     \hline
514   \end{mytable}
515
516   \bigskip
517
518   \begin{mytable}{6}
519     \hline
520     bandwidth
521     & 50        & 50        & 50        & 50        & 10        & 10 \\
522     \hline
523     latency
524     & 0.02      & 0.02      & 0.02      & 0.02      & 0.03      & 0.01 \\
525     \hline
526     power
527     & 1.5       & 1.5       & 1.5       & 1.5       & 1         & 1.5 \\
528     \hline
529     size
530     & 120       & 130       & 140       & 150       & 171       & 171 \\
531     \hline
532     Prec/Eprec
533     & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-11} & \np{E-5}  & \np{E-5} \\
534     \hline
535     \hline
536     Relative gain
537     & 2.51     & 2.58     & 2.55     & 2.54     & 1.59      & 1.29 \\
538     \hline
539   \end{mytable}
540 \end{table}
541   
542 Then we have changed the network configuration using three clusters containing
543 respectively 33, 33 and 34 hosts, or again by on hundred hosts for all the
544 clusters. In the same way as above, a judicious choice of key parameters has
545 permitted to get the results in Table~\ref{tab.cluster.3x33} which shows the
546 relative gains greater than 1 with a matrix size from 62 to 100 elements.
547
548 \begin{table}[!t]
549   \centering
550   \caption{3 clusters, each with 33 nodes}
551   \label{tab.cluster.3x33}
552
553   \begin{mytable}{6}
554     \hline
555     bandwidth
556     & 10       & 5        & 4        & 3        & 2        & 6 \\
557     \hline
558     latency
559     & 0.01     & 0.02     & 0.02     & 0.02     & 0.02     & 0.02 \\
560     \hline
561     power
562     & 1        & 1        & 1        & 1        & 1        & 1 \\
563     \hline
564     size
565     & 62       & 100      & 100      & 100      & 100      & 171 \\
566     \hline
567     Prec/Eprec
568     & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} & \np{E-5} \\
569     \hline
570     \hline
571     Relative gain
572     & 1.003    & 1.01     & 1.08     & 1.19     & 1.28     & 1.01 \\
573     \hline
574   \end{mytable}
575 \end{table}
576
577 In a final step, results of an execution attempt to scale up the three clustered
578 configuration but increasing by two hundreds hosts has been recorded in
579 Table~\ref{tab.cluster.3x67}.
580
581 \begin{table}[!t]
582   \centering
583   \caption{3 clusters, each with 66 nodes}
584   \label{tab.cluster.3x67}
585
586   \begin{mytable}{1}
587     \hline
588     bandwidth  & 1 \\
589     \hline
590     latency    & 0.02 \\
591     \hline
592     power      & 1 \\
593     \hline
594     size       & 62 \\
595     \hline
596     Prec/Eprec & \np{E-5} \\
597     \hline
598     \hline
599     Relative gain    & 1.11 \\
600     \hline
601   \end{mytable}
602 \end{table}
603
604 Note that the program was run with the following parameters:
605
606 \paragraph*{SMPI parameters}
607
608 ~\\{}\AG{Donner un peu plus de précisions (plateforme en particulier).}
609 \begin{itemize}
610 \item HOSTFILE: Hosts file description.
611 \item PLATFORM: file description of the platform architecture : clusters (CPU
612   power, \dots{}), intra cluster network description, inter cluster network
613   (bandwidth, latency, \dots{}).
614 \end{itemize}
615
616
617 \paragraph*{Arguments of the program}
618
619 \begin{itemize}
620         \item Description of the cluster architecture;
621         \item Maximum number of internal and external iterations;
622         \item Internal and external precisions;
623         \item Matrix size $N_x$, $N_y$ and $N_z$;
624         \item Matrix diagonal value: \np{6.0};
625         \item Matrix off-diagonal value: \np{-1.0};
626         \item Execution Mode: synchronous or asynchronous.
627 \end{itemize}
628
629 \paragraph*{Interpretations and comments}
630
631 After analyzing the outputs, generally, for the configuration with two or three
632 clusters including one hundred hosts (Tables~\ref{tab.cluster.2x50}
633 and~\ref{tab.cluster.3x33}), some combinations of the used parameters affecting
634 the results have given a relative gain more than 2.5, showing the effectiveness of the
635 asynchronous performance compared to the synchronous mode.
636
637 In the case of a two clusters configuration, Table~\ref{tab.cluster.2x50} shows
638 that with a deterioration of inter cluster network set with \np[Mbit/s]{5} of
639 bandwidth, a latency in order of a hundredth of a millisecond and a system power
640 of one GFlops, an efficiency of about \np[\%]{40} in asynchronous mode is
641 obtained for a matrix size of 62 elements. It is noticed that the result remains
642 stable even if we vary the external precision from \np{E-5} to \np{E-9}. By
643 increasing the matrix size up to 100 elements, it was necessary to increase the
644 CPU power of \np[\%]{50} to \np[GFlops]{1.5} for a convergence of the algorithm
645 with the same order of asynchronous mode efficiency.  Maintaining such a system
646 power but this time, increasing network throughput inter cluster up to
647 \np[Mbit/s]{50}, the result of efficiency with a relative gain of 1.5\AG[]{2.5 ?} is obtained with
648 high external precision of \np{E-11} for a matrix size from 110 to 150 side
649 elements.
650
651 For the 3 clusters architecture including a total of 100 hosts,
652 Table~\ref{tab.cluster.3x33} shows that it was difficult to have a combination
653 which gives a relative gain of asynchronous mode more than 1.2. Indeed, for a
654 matrix size of 62 elements, equality between the performance of the two modes
655 (synchronous and asynchronous) is achieved with an inter cluster of
656 \np[Mbit/s]{10} and a latency of \np[ms]{E-1}. To challenge an efficiency greater than 1.2 with a matrix size of 100 points, it was necessary to degrade the
657 inter cluster network bandwidth from 5 to \np[Mbit/s]{2}.
658 \AG{Conclusion, on prend une plateforme pourrie pour avoir un bon ratio sync/async ???
659   Quelle est la perte de perfs en faisant ça ?}
660
661 A last attempt was made for a configuration of three clusters but more powerful
662 with 200 nodes in total. The convergence with a relative gain around 1.1 was
663 obtained with a bandwidth of \np[Mbit/s]{1} as shown in
664 Table~\ref{tab.cluster.3x67}.
665
666 \RC{Est ce qu'on sait expliquer pourquoi il y a une telle différence entre les résultats avec 2 et 3 clusters... Avec 3 clusters, ils sont pas très bons... Je me demande s'il ne faut pas les enlever...}
667 \RC{En fait je pense avoir la réponse à ma remarque... On voit avec les 2 clusters que le gain est d'autant plus grand qu'on choisit une bonne précision. Donc, plusieurs solutions, lancer rapidement un long test pour confirmer ca, ou enlever des tests... ou on ne change rien :-)}
668 \LZK{Ma question est: le bandwidth et latency sont ceux inter-clusters ou pour les deux inter et intra cluster??}
669
670 \section{Conclusion}
671 The experimental results on executing a parallel iterative algorithm in 
672 asynchronous mode on an environment simulating a large scale of virtual 
673 computers organized with interconnected clusters have been presented. 
674 Our work has demonstrated that using such a simulation tool allow us to 
675 reach the following three objectives: 
676
677 \begin{enumerate}
678 \item To have a flexible configurable execution platform resolving the 
679 hard exercise to access to very limited but so solicited physical 
680 resources;
681 \item to ensure the algorithm convergence with a reasonable time and
682 iteration number ;
683 \item and finally and more importantly, to find the correct combination 
684 of the cluster and network specifications permitting to save time in 
685 executing the algorithm in asynchronous mode.
686 \end{enumerate}
687 Our results have shown that in certain conditions, asynchronous mode is 
688 speeder up to \np[\%]{40} than executing the algorithm in synchronous mode
689 which is not negligible for solving complex practical problems with more 
690 and more increasing size.
691
692  Several studies have already addressed the performance execution time of 
693 this class of algorithm. The work presented in this paper has 
694 demonstrated an original solution to optimize the use of a simulation 
695 tool to run efficiently an iterative parallel algorithm in asynchronous 
696 mode in a grid architecture. 
697
698 \LZK{Perspectives???}
699
700 \section*{Acknowledgment}
701
702 This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
703 \todo[inline]{The authors would like to thank\dots{}}
704
705 % trigger a \newpage just before the given reference
706 % number - used to balance the columns on the last page
707 % adjust value as needed - may need to be readjusted if
708 % the document is modified later
709 \bibliographystyle{IEEEtran}
710 \bibliography{IEEEabrv,hpccBib}
711
712
713
714 \end{document}
715
716 %%% Local Variables:
717 %%% mode: latex
718 %%% TeX-master: t
719 %%% fill-column: 80
720 %%% ispell-local-dictionary: "american"
721 %%% End:
722
723 % LocalWords:  Ramamonjisoa Laiymani Arnaud Giersch Ziane Khodja Raphaël Femto
724 % LocalWords:  Université Franche Comté IUT Montbéliard Maréchal Juin Inria Sud
725 % LocalWords:  Ouest Vieille Talence cedex scalability experimentations HPC MPI
726 % LocalWords:  Parallelization AIAC GMRES multi SMPI SISC SIAC SimDAG DAGs Lua
727 % LocalWords:  Fortran GFlops priori Mbit de du fcomte multisplitting scalable
728 % LocalWords:  SimGrid Belfort parallelize Labex ANR LABX IEEEabrv hpccBib
729 % LocalWords:  intra durations nonsingular Waitall discretization discretized
730 % LocalWords:  InnerSolver Isend Irecv