]> AND Private Git Repository - hpcc2014.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif intro
authorraphael couturier <couturie@extinction>
Sun, 27 Apr 2014 14:19:16 +0000 (16:19 +0200)
committerraphael couturier <couturie@extinction>
Sun, 27 Apr 2014 14:19:16 +0000 (16:19 +0200)
hpcc.tex

index abcf399755d8c18c50ffc6a2164fa02ca32aa2c0..29d00a12b6988e8e5291c2f29a9b6d550054f356 100644 (file)
--- a/hpcc.tex
+++ b/hpcc.tex
@@ -82,7 +82,7 @@ paper, we show  that it is interesting to use SimGrid  to simulate the behaviors
 of asynchronous  iterative algorithms. For that,  we compare the  behaviour of a
 synchronous  GMRES  algorithm  with  an  asynchronous  multisplitting  one  with
 simulations  in  which we  choose  some parameters.   Both  codes  are real  MPI
-codes. Experiments allow us to see when the multisplitting algorithm can be more
+codes. Simulations allow us to see when the multisplitting algorithm can be more
 efficient than the GMRES one to solve a 3D Poisson problem.
 
 
@@ -135,35 +135,38 @@ iterative  asynchronous algorithms  to solve  a given  problem on  a large-scale
 simulated environment challenges to  find optimal configurations giving the best
 results with a lowest residual error and in the best of execution time.
 
-To our knowledge, there is no existing work on the large-scale simulation of a
-real AIAC application. There are {\bf two contributions} in this paper. First we give a first
-approach of the simulation of AIAC algorithms using a simulation tool (i.e. the
-SimGrid toolkit~\cite{SimGrid}). Second, we confirm the effectiveness of the
-asynchronous multisplitting algorithm by comparing its performance with the synchronous
-GMRES. More precisely, we had implemented a program for solving large
-linear system of equations by numerical method GMRES (Generalized
-Minimal Residual) \cite{ref1}. We show, that with minor modifications of the
-initial MPI code, the SimGrid toolkit allows us to perform a test campaign of a
-real AIAC application on different computing architectures. The simulated
-results we obtained are in line with real results exposed in ??\AG[]{ref?}.
-SimGrid had allowed us to launch the application from a modest computing
-infrastructure by simulating different distributed architectures composed by
-clusters nodes interconnected by variable speed networks.  With selected
-parameters on the network platforms (bandwidth, latency of inter cluster
-network) and on the clusters architecture (number, capacity calculation power)
-in the simulated environment, the experimental results have demonstrated not
-only the algorithm convergence within a reasonable time compared with the
-physical environment performance, but also a time saving of up to \np[\%]{40} in
-asynchronous mode.
-\AG{Il faudrait revoir la phrase précédente (couper en deux?).  Là, on peut
-  avoir l'impression que le gain de \np[\%]{40} est entre une exécution réelle
-  et une exécution simulée!}
-
-This article is structured as follows: after this introduction, the next  section will give a brief description of
-iterative asynchronous model.  Then, the simulation framework SimGrid is presented with the settings to create various
-distributed architectures. The algorithm of  the multisplitting method used by GMRES \LZK{??? GMRES n'utilise pas la méthode de multisplitting! Sinon ne doit on pas expliquer le choix d'une méthode de multisplitting?} written with MPI primitives and
-its adaptation to SimGrid with SMPI (Simulated MPI) is detailed in the next section. At last, the experiments results
-carried out will be presented before some concluding remarks and future works.
+To our knowledge,  there is no existing work on the  large-scale simulation of a
+real  AIAC application.   {\bf  The contribution  of  the present  paper can  be
+  summarised  in two  main  points}.  First  we  give a  first  approach of  the
+simulation  of  AIAC algorithms  using  a  simulation  tool (i.e.   the  SimGrid
+toolkit~\cite{SimGrid}).    Second,  we   confirm  the   effectiveness   of  the
+asynchronous  multisplitting algorithm  by  comparing its  performance with  the
+synchronous GMRES (Generalized Minimal  Residual) \cite{ref1}.  Both these codes
+can be  used to  solve large linear  systems. In  this paper, we  focus on  a 3D
+Poisson  problem.  We show,  that with  minor modifications  of the  initial MPI
+code, the SimGrid  toolkit allows us to  perform a test campaign of  a real AIAC
+application on different computing architectures.
+% The  simulated results  we
+%obtained are  in line with real  results exposed in  ??\AG[]{ref?}. 
+SimGrid  had  allowed us  to  launch the  application  from  a modest  computing
+infrastructure  by simulating  different distributed  architectures  composed by
+clusters  nodes interconnected by  variable speed  networks.  Parameters  of the
+network  platforms  are   the  bandwidth  and  the  latency   of  inter  cluster
+network. Parameters on the cluster's architecture are the number of machines and
+the  computation power  of a  machine.  Simulations show  that the  asynchronous
+multisplitting algorithm  can solve the  3D Poisson problem  approximately twice
+faster than GMRES with two distant clusters.
+
+
+
+This article is structured as follows: after this introduction, the next section
+will  give a  brief  description  of iterative  asynchronous  model.  Then,  the
+simulation framework  SimGrid is presented  with the settings to  create various
+distributed architectures.  Then, the  multisplitting method is presented, it is
+based  on GMRES to  solve each  block obtained  of the  splitting. This  code is
+written with MPI  primitives and its adaptation to  SimGrid with SMPI (Simulated
+MPI) is  detailed in the next  section. At last, the  simulation results carried
+out will be presented before some concluding remarks and future works.
  
 \section{Motivations and scientific context}