network. Parameters on the cluster's architecture are the number of machines and
the computation power of a machine. Simulations show that the asynchronous
multisplitting algorithm can solve the 3D Poisson problem approximately twice
-faster than GMRES with two distant clusters.
+faster than GMRES with two distant clusters. In this way, we present an original solution to optimize the use of a simulation
+tool to run efficiently an asynchronous iterative parallel algorithm in a grid architecture
asynchronous multisplitting compared to GMRES with two distant clusters.
With these settings, Table~\ref{tab.cluster.2x50} shows
-that after setting the bandwidth of the inter cluster network to \np[Mbit/s]{5} and a latency in order of one hundredth of millisecond and a processor power
-of one GFlops, an efficiency of about \np[\%]{40} is
+that after setting the bandwidth of the inter cluster network to \np[Mbit/s]{5}, the latency to $20$ millisecond and the processor power
+to one GFlops, an efficiency of about \np[\%]{40} is
obtained in asynchronous mode for a matrix size of $62^3$ elements. It is noticed that the result remains
stable even we vary the residual error precision from \np{E-5} to \np{E-9}. By
increasing the matrix size up to $100^3$ elements, it was necessary to increase the
%\CER{Définitivement, les paramètres réseaux variables ici se rapportent au réseau INTER cluster.}
\section{Conclusion}
The simulation of the execution of parallel asynchronous iterative algorithms on large scale clusters has been presented.
-In this work, we show that SIMGRID is an efficient simulation tool that allows us to
+In this work, we show that SimGrid is an efficient simulation tool that allows us to
reach the following two objectives:
\begin{enumerate}