2 title = "The lorentz transformation and absolute time",
8 doi = "10.1016/S0031-8914(53)80099-6",
9 author = "P.A.M. Dirac"
12 @article{Feynman1963118,
13 title = "The theory of a general quantum system interacting with a linear dissipative system",
14 journal = "Annals of Physics ",
18 doi = "10.1016/0003-4916(63)90068-X",
19 author = "R.P Feynman AND F.L {Vernon Jr.}"
23 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
24 journal = "Mathematics of Computation",
29 doi = "10.1016/0003-4916(63)90068-X",
36 title = "On the approximations of Newton",
37 journal = "Annual Sofia Univ",
42 doi = "10.1016/0003-4916(63)90068-X",
47 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
48 journal = "Phys. Math. J",
57 % title = "Solution Numerique des Equations Algebriques, Vol. 1, Equations du Type F(x)=0, Racines d'une Polynome",
63 % author = "E. Durand",
66 author = "\'E. Durand",
67 publisher = "Masson, Paris",
68 title = "Solutions num\'eriques des \'equations alg\'ebriques.
69 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
75 %title = "Ein Gesamtschritteverfahren zur Berechnung der Nullstellen von Polynomen",
76 % journal = "Numerische Mathematik",
81 % author = "I. Kerner",
86 author = "Immo O. Kerner",
87 title = "{Ein Gesamtschrittverfahren zur Berechnung der
88 Nullstellen von Polynomen}. ({German}) [{A} Complete
89 Step Method for the Computation of Zeros of
91 journal = "Numerische Mathematik",
98 ISSN = "0029-599X (print), 0945-3245 (electronic)",
99 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
100 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
101 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
102 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
103 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
104 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
105 \path|beebe@acm.org|, \path|beebe@computer.org|
107 \path|http://www.math.utah.edu/~beebe/|",
108 fjournal = "Numerische Mathematik",
109 journal-url = "http://link.springer.com/journal/211",
112 %@Article{Borch-Supan63,
113 % title = "A posteriori error for the zeros of polynomials",
114 %journal = " Numerische Mathematik",
119 % author = "W. Borch-Supan",
122 @Article{Borch-Supan63,
123 author = "W. Boersch-Supan",
124 title = "A Posteriori Error Bounds for the Zeros of
126 journal = "Numerische Mathematik",
132 bibdate = "Fri Jan 12 11:37:56 1996",
133 acknowledgement = "Jon Rokne, Department of Computer Science, The
134 University of Calgary, 2500 University Drive N.W.,
135 Calgary, Alberta T2N 1N4, Canada",
139 % title = "A modified Newton method for polynomials",
140 % journal = " Comm. Ass. Comput. Mach.",
145 % author = "L.W. Ehrlich",
149 title = "A modified Newton method for polynomials",
150 author = "Louis W. Ehrlich",
151 journal = "Commun. ACM",
155 bibdate = "2003-11-20",
157 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
159 URL = "http://doi.acm.org/10.1145/363067.363115",
162 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
163 journal = " Intern. J. Computer Math",
168 author = "G. Loizon",
172 title = " Calculating polynomial zeros on a local memory parallel computer",
173 journal = " Parallel Computing",
178 author = "T.L. Freeman",
181 @Article{Freemanall90,
182 title = " Asynchronous polynomial zero-finding algorithms",
183 journal = " Parallel Computing",
188 author = "T.L. Freeman AND R.K. Brankin",
191 @Article{Raphaelall01,
192 title = " Extraction de racines dans des polynômes creux de degrées élevés. RSRCP (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
193 journal = " Algorithmes itératifs paralléles et distribués",
198 author = "R. Couturier AND F. Spies",
201 @Article{Ostrowski41,
202 title = " On a Theorem by J.L. Walsh Concerning the Moduli of Roots of Algebraic Equations,Bull. A.M.S.",
203 journal = " Algorithmes itératifs paralléles et distribués",
208 author = "A. Ostrowski",
213 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
214 OPTkey = {NVIDIA CUDA},
216 OPTorganization = {NVIDIA CUDA},
221 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
226 title = " parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU",
227 journal = " IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
232 author = "K. Ghidouche AND R. Couturier AND A. Sider",
237 title = " Perfectionnements de la méthode asynchrone de Durand-Kerner pour les polynômes complexes",
238 journal = " Calculateurs Parallèles",
243 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
248 title = " Numerical computation of polynomial zeros by means of Aberth s method",
249 journal = " Numerical Algorithms",
258 title = " Parallel methods for approximating the roots of a function",
259 journal = " IBM Res Dev",
264 author = "WL. Mirankar",
268 title = " A survey of parallelism in numerical analysis",
269 journal = " SIAM Rev",
274 author = "WL. Mirankar",
278 title = " Parallel iteration methods in complexity of computer communications",
279 journal = " Commun ACM ",
284 author = "GS. Schedler",
288 title = " Parallel iteration methods in complexity of computer communications",
289 journal = " Plenum, New York",
294 author = "S. Winogard",
298 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
299 journal = " Int: Proc of ACM",
304 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
308 title = " A highly parallel algorithm for root extraction",
309 journal = " IEEE Trans Comp",
314 author = "TA. Rice AND LH. Jamieson",
318 title = " Finding the roots of a polynomial on an MIMD multicomputer",
319 journal = " Parallel Comput",
324 author = "M. Cosnard AND P. Fraigniaud",
328 title = " Efficient parallel algorithms for finding polynomial zeroes",
329 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
334 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
338 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
339 journal = " Parallel Comput",
346 @Article{Kalantari08,
347 title = " Polynomial root finding and polynomiography.",
348 journal = " World Scientifict,New Jersey",
353 author = "B. Kalantari",
356 @Article{Gemignani07,
357 title = " Structured matrix methods for polynomial root finding.",
358 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
363 author = "L. Gemignani",
369 title = " Structured matrix methods for polynomial root finding.",
370 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
375 author = "V. Skachek",
379 AUTHOR = {V. Skachek},
381 TITLE = {Probabilistic algorithm for finding roots of linearized polynomials},
382 PUBLISHER = {codes and cryptography. Kluwer},
399 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
400 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
405 author = "X. Zhanc AND M. Wan,Z.Yi",
410 title = " an adaptive algorithm finding multiple roots of polynomials",
411 journal = " Lect Notes Comput Sci ",
416 author = "W. Zhu AND w. Zeng AND D. Lin",
419 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
420 journal = " Clust Comput ",
432 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
433 journal = " Comput Math Appl ",
438 author = "DA. Bini AND L. Gemignani",
442 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
443 journal = " In: Proc of the 2nd int conference on information technology",
451 @Article{Weierstrass03,
452 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
453 journal = " Ges. Werke",
458 author = "K. Weierstrass",
465 editor = {Design Guide},
466 TITLE = {NVIDIA CUDA C Programming Guide},