2 title = "The lorentz transformation and absolute time",
8 doi = "10.1016/S0031-8914(53)80099-6",
9 author = "P.A.M. Dirac"
12 @article{Feynman1963118,
13 title = "The theory of a general quantum system interacting with a linear dissipative system",
14 journal = "Annals of Physics ",
18 doi = "10.1016/0003-4916(63)90068-X",
19 author = "R.P Feynman AND F.L {Vernon Jr.}"
23 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
24 journal = "Mathematics of Computation",
29 doi = "10.1016/0003-4916(63)90068-X",
35 title = "On the approximations of Newton",
36 journal = "Annual Sofia Univ",
41 doi = "10.1016/0003-4916(63)90068-X",
47 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
48 journal = "Phys. Math. J",
57 author = "\'E. Durand",
58 publisher = "Masson, Paris",
59 title = "Solutions num\'eriques des \'equations alg\'ebriques.
60 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
66 author = "Immo O. Kerner",
67 title = "{Ein Gesamtschrittverfahren zur Berechnung der
68 Nullstellen von Polynomen}. ({German}) [{A} Complete
69 Step Method for the Computation of Zeros of
71 journal = "Numerische Mathematik",
78 ISSN = "0029-599X (print), 0945-3245 (electronic)",
79 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
80 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
81 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
82 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
83 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
84 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
85 \path|beebe@acm.org|, \path|beebe@computer.org|
87 \path|http://www.math.utah.edu/~beebe/|",
88 fjournal = "Numerische Mathematik",
89 journal-url = "http://link.springer.com/journal/211",
93 @Article{Borch-Supan63,
94 author = "W. Boersch-Supan",
95 title = "A Posteriori Error Bounds for the Zeros of
97 journal = "Numerische Mathematik",
103 bibdate = "Fri Jan 12 11:37:56 1996",
104 acknowledgement = "Jon Rokne, Department of Computer Science, The
105 University of Calgary, 2500 University Drive N.W.,
106 Calgary, Alberta T2N 1N4, Canada",
110 title = "A modified Newton method for polynomials",
111 author = "Louis W. Ehrlich",
112 journal = "Commun. ACM",
116 bibdate = "2003-11-20",
118 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
120 URL = "http://doi.acm.org/10.1145/363067.363115",
123 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
124 journal = " Intern. J. Computer Math",
129 author = "G. Loizon",
133 title = " Calculating polynomial zeros on a local memory parallel computer",
134 journal = " Parallel Computing",
139 author = "T.L. Freeman",
142 @Article{Freemanall90,
143 title = " Asynchronous polynomial zero-finding algorithms",
144 journal = " Parallel Computing",
149 author = "T.L. Freeman AND R.K. Brankin",
152 @Article{Raphaelall01,
153 title = " Extraction de racines dans des polynômes creux de degrées élevés. RSRCP (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
154 journal = " Algorithmes itératifs paralléles et distribués",
159 author = "R. Couturier AND F. Spies",
162 @Article{Ostrowski41,
163 title = " On a Theorem by J.L. Walsh Concerning the Moduli of Roots of Algebraic Equations,Bull. A.M.S.",
164 journal = " Algorithmes itératifs paralléles et distribués",
169 author = "A. Ostrowski",
174 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
175 OPTkey = {NVIDIA CUDA},
177 OPTorganization = {NVIDIA CUDA},
182 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
187 title = " parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU",
188 journal = " IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
193 author = "K. Ghidouche AND R. Couturier AND A. Sider",
198 title = " Perfectionnements de la méthode asynchrone de Durand-Kerner pour les polynômes complexes",
199 journal = " Calculateurs Parallèles",
204 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
209 title = " Numerical computation of polynomial zeros by means of Aberth s method",
210 journal = " Numerical Algorithms",
219 title = " Parallel methods for approximating the roots of a function",
220 journal = " IBM Res Dev",
225 author = "WL. Mirankar",
229 title = " A survey of parallelism in numerical analysis",
230 journal = " SIAM Rev",
235 author = "WL. Mirankar",
239 title = " Parallel iteration methods in complexity of computer communications",
240 journal = " Commun ACM ",
245 author = "GS. Schedler",
249 title = " Parallel iteration methods in complexity of computer communications",
250 journal = " Plenum, New York",
255 author = "S. Winogard",
259 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
260 journal = " Int: Proc of ACM",
265 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
269 title = " A highly parallel algorithm for root extraction",
270 journal = " IEEE Trans Comp",
275 author = "TA. Rice AND LH. Jamieson",
279 title = " Finding the roots of a polynomial on an MIMD multicomputer",
280 journal = " Parallel Comput",
285 author = "M. Cosnard AND P. Fraigniaud",
289 title = " Efficient parallel algorithms for finding polynomial zeroes",
290 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
295 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
299 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
300 journal = " Parallel Comput",
310 author = {B. Kalantari},
311 title = {Polynomial root finding and polynomiography},
312 publisher = {World Scientifict},
319 OPTmonth = {December},
325 @InProceedings{Gemignani07,
326 author = "Luca Gemignani",
327 title = "Structured matrix methods for polynomial
329 editor = "C. W. Brown",
330 booktitle = "Proceedings of the 2007 International Symposium on
331 Symbolic and Algebraic Computation, July 29--August 1,
332 2007, University of Waterloo, Waterloo, Ontario,
334 publisher = "ACM Press",
335 address = "pub-ACM:adr",
336 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
337 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
341 doi = "http://doi.acm.org/10.1145/1277548.1277573",
342 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
343 bibsource = "http://portal.acm.org/;
344 http://www.math.utah.edu/pub/tex/bib/issac.bib",
345 abstract = "In this paper we discuss the use of structured matrix
346 methods for the numerical approximation of the zeros of
347 a univariate polynomial. In particular, it is shown
348 that root-finding algorithms based on floating-point
349 eigenvalue computation can benefit from the structure
350 of the matrix problem to reduce their complexity and
351 memory requirements by an order of magnitude.",
352 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
353 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
354 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
355 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
356 \path|beebe@acm.org|, \path|beebe@computer.org|
358 \path|http://www.math.utah.edu/~beebe/|",
359 keywords = "complexity; eigenvalue computation; polynomial
360 root-finding; rank-structured matrices",
361 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
366 title = " Structured matrix methods for polynomial root finding",
367 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
372 author = "V. Skachek",
376 title = "Probabilistic algorithm for finding roots of
377 linearized polynomials",
378 author = "Vitaly Skachek and Ron M. Roth",
379 journal = "Des. Codes Cryptography",
383 bibdate = "2008-03-11",
385 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
387 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
391 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
392 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
397 author = "X. Zhanc AND M. Wan,Z.Yi",
401 @InProceedings{Zhuall08,
402 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
403 author = "Wei Zhu and Zhe-zhao Zeng and Dong-mei Lin",
404 bibdate = "2008-09-25",
406 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
407 booktitle = "ISNN (2)",
408 publisher = "Springer",
411 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
412 Jinde Cao and Wen Yu 0001",
413 ISBN = "978-3-540-87733-2",
415 series = "Lecture Notes in Computer Science",
416 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
420 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
421 journal = " Clust Comput ",
433 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
434 journal = " Comput Math Appl ",
439 author = "DA. Bini AND L. Gemignani",
443 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
444 journal = " In: Proc of the 2nd int conference on information technology",
452 @Article{Weierstrass03,
453 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
454 journal = " Ges. Werke",
459 author = "K. Weierstrass",
462 title = {NVIDIA CUDA C Programming Guide},
464 OPTauthor = {NVIDIA Corporation},
465 OPTorganization = {Design Guide},