2 title = "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
3 journal = "Mathematics of Computation",
13 title = "On the approximations of Newton",
14 journal = "Annual Sofia Univ",
24 title = "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
25 journal = "Phys. Math. J",
34 author = "\'E. Durand",
35 publisher = "Masson, Paris",
36 title = "Solutions num\'eriques des \'equations alg\'ebriques.
37 {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
43 author = "Immo O. Kerner",
44 title = "{Ein Gesamtschrittverfahren zur Berechnung der
45 Nullstellen von Polynomen}. ({German}) [{A} Complete
46 Step Method for the Computation of Zeros of
48 journal = "Numerische Mathematik",
55 ISSN = "0029-599X (print), 0945-3245 (electronic)",
56 bibdate = "Mon Oct 18 01:28:20 MDT 1999",
57 bibsource = "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
58 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
59 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
60 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
61 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
62 \path|beebe@acm.org|, \path|beebe@computer.org|
64 \path|http://www.math.utah.edu/~beebe/|",
65 fjournal = "Numerische Mathematik",
66 journal-url = "http://link.springer.com/journal/211",
70 @Article{Borch-Supan63,
71 author = "W. Boersch-Supan",
72 title = "A Posteriori Error Bounds for the Zeros of
74 journal = "Numerische Mathematik",
80 bibdate = "Fri Jan 12 11:37:56 1996",
81 acknowledgement = "Jon Rokne, Department of Computer Science, The
82 University of Calgary, 2500 University Drive N.W.,
83 Calgary, Alberta T2N 1N4, Canada",
87 title = "A modified Newton method for polynomials",
88 author = "Louis W. Ehrlich",
89 journal = "Commun. ACM",
93 bibdate = "2003-11-20",
95 http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
97 URL = "http://doi.acm.org/10.1145/363067.363115",
100 title = "Higher-order iteration functions for simultaneously approximating polynomial zeros",
101 journal = " Intern. J. Computer Math",
106 author = "G. Loizou",
110 title = "Calculating polynomial zeros on a local memory
112 author = "T. L. Freeman",
113 journal = "Parallel Computing",
117 bibdate = "2011-09-09",
119 http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
121 URL = "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
123 @Article{Freemanall90,
124 title = " Asynchronous polynomial zero-finding algorithms",
125 journal = " Parallel Computing",
130 author = "T.L. Freeman AND R.K. Brankin",
133 @Article{Raphaelall01,
134 title = " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
135 journal = " Algorithmes itératifs paralléles et distribués",
140 author = "R. Couturier AND F. Spies",
143 @Article{Ostrowski41,
144 title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations,Bull. A.M.S.",
145 journal = " Algorithmes itératifs paralléles et distribués",
150 author = "A. Ostrowski",
155 title = {Compute Unified Device Architecture Programming Guide Version 3.0},
156 OPTkey = {NVIDIA CUDA},
158 OPTorganization = {NVIDIA CUDA},
163 OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
168 title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on GPU",
169 journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
174 author = "K. Ghidouche AND R. Couturier AND A. Sider",
179 title = " Perfectionnements de la méthode asynchrone de Durand-Kerner pour les polynômes complexes",
180 journal = " Calculateurs Parallèles",
185 author = "K. Rhofir AND F. Spies AND Jean-Claude Miellou",
189 title = "Numerical computation of polynomial zeros by means of
192 journal = "Numerical Algorithms",
196 bibdate = "2015-09-27",
198 http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
200 URL = "http://dx.doi.org/10.1007/BF02207694",
203 title = " Parallel methods for approximating the roots of a function",
204 journal = " IBM Res Dev",
209 author = "WL. Mirankar",
213 title = " A survey of parallelism in numerical analysis",
214 journal = " SIAM Rev",
219 author = "WL. Mirankar",
223 title = " Parallel Numerical Methods for Solution of Equations",
224 journal = " Commun ACM ",
229 author = "GS. Schedler",
233 title = " Parallel iteration methods",
234 journal = " Plenum, New York",
239 author = "S. Winogard",
243 title = " A fast parallel algorithm for determining all roots of a polynomial with real roots",
244 journal = " Int: Proc of ACM",
249 author = "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
253 title = " A highly parallel algorithm for root extraction",
254 journal = " IEEE Trans Comp",
259 author = "TA. Rice AND LH. Jamieson",
263 title = " Finding the roots of a polynomial on an MIMD multicomputer",
264 journal = " Parallel Comput",
269 author = "M. Cosnard AND P. Fraigniaud",
273 title = " Efficient parallel algorithms for finding polynomial zeroes",
274 journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
279 author = "PK. Jana AND BP. Sinha AND R. Datta Gupta",
283 title = " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
284 journal = " Parallel Comput",
294 author = {B. Kalantari},
295 title = {Polynomial root finding and polynomiography},
296 publisher = {World Scientifict},
303 OPTmonth = {December},
309 title = " Structured matrix methods for polynomial root finding",
310 journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
315 author = "V. Skachek",
320 @InProceedings{Gemignani07,
321 author = "Luca Gemignani",
322 title = "Structured matrix methods for polynomial
324 editor = "C. W. Brown",
325 booktitle = "Proceedings of the 2007 International Symposium on
326 Symbolic and Algebraic Computation, July 29--August 1,
327 2007, University of Waterloo, Waterloo, Ontario,
329 publisher = "ACM Press",
330 address = "pub-ACM:adr",
331 ISBN = "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
332 isbn-13 = "978-1-59593-743-8 (print), 978-1-59593-742-1
336 doi = "http://doi.acm.org/10.1145/1277548.1277573",
337 bibdate = "Fri Jun 20 08:46:50 MDT 2008",
338 bibsource = "http://portal.acm.org/;
339 http://www.math.utah.edu/pub/tex/bib/issac.bib",
340 abstract = "In this paper we discuss the use of structured matrix
341 methods for the numerical approximation of the zeros of
342 a univariate polynomial. In particular, it is shown
343 that root-finding algorithms based on floating-point
344 eigenvalue computation can benefit from the structure
345 of the matrix problem to reduce their complexity and
346 memory requirements by an order of magnitude.",
347 acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
348 of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
349 City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
350 801 581 4148, e-mail: \path|beebe@math.utah.edu|,
351 \path|beebe@acm.org|, \path|beebe@computer.org|
353 \path|http://www.math.utah.edu/~beebe/|",
354 keywords = "complexity; eigenvalue computation; polynomial
355 root-finding; rank-structured matrices",
356 doi-url = "http://dx.doi.org/10.1145/1277548.1277573",
360 title = "Probabilistic algorithm for finding roots of
361 linearized polynomials",
362 author = "Vitaly Skachek and Ron M. Roth",
363 journal = "Des. Codes Cryptography",
367 bibdate = "2008-03-11",
369 http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
371 URL = "http://dx.doi.org/10.1007/s10623-007-9125-y",
375 title = " A constrained learning algorithm for finding multiple real roots of polynomial",
376 journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
381 author = "X. Zhanc AND M. Wan,Z.Yi",
385 @InProceedings{Zhuall08,
386 title = "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
387 author = "Wei Zhu AND Zhe-zhao Zeng AND Dong-mei Lin",
388 bibdate = "2008-09-25",
390 http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
391 booktitle = "ISNN (2)",
392 publisher = "Springer",
395 editor = "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
396 Jinde Cao and Wen Yu 0001",
397 ISBN = "978-3-540-87733-2",
399 series = "Lecture Notes in Computer Science",
400 URL = "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
404 title = " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
405 journal = " Clust Comput ",
417 title = " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
418 journal = " Comput Math Appl ",
423 author = "DA. Bini AND L. Gemignani",
427 title = " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
428 journal = " In: Proc of the 2nd int conference on information technology",
436 @Article{Weierstrass03,
437 title = " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
438 journal = " Ges. Werke",
443 author = "K. Weierstrass",
446 title = {NVIDIA CUDA C Programming Guide},
448 OPTauthor = {NVIDIA Corporation},
449 OPTorganization = {Design Guide},