]> AND Private Git Repository - kahina_paper1.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction des equations
authorKahina <kahina@kahina-VPCEH3K1E.(none)>
Thu, 29 Oct 2015 12:54:04 +0000 (13:54 +0100)
committerKahina <kahina@kahina-VPCEH3K1E.(none)>
Thu, 29 Oct 2015 12:54:04 +0000 (13:54 +0100)
paper.tex

index 0ff4207f68d8e410d2fe7ebb99f16ae008e07966..9fee850fbfa1c35aff39f3254619f1b4267ae742 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -115,14 +115,14 @@ The root finding problem consists in finding the values of all the $n$ values of
 \end{equation}
 
 The problem of finding a root is equivalent to that of solving a fixed-point problem. To see this, consider the fixed-point problem of finding the $n$-dimensional
-vector $x$ such that
+vector $x$ such that :
 \begin{center}
 $x=g(x)$
 \end{center}
 where $g : C^{n}\longrightarrow C^{n}$. Usually, we can easily
 rewrite this fixed-point problem as a root-finding problem by
 setting $f(x) = x-g(x)$ and likewise we can recast the
-root-finding problem into a fixed-point problem by setting
+root-finding problem into a fixed-point problem by setting :
 \begin{center}
 $g(x)= f(x)-x$.
 \end{center}
@@ -147,10 +147,10 @@ approximation of all the roots, starting with the Durand-Kerner (DK)
 method:
 %%\begin{center}
 \begin{equation}
Z_i^{k+1}=Z_{i}^k-\frac{P(Z_i^k)}{\prod_{i\neq j}(Z_i^k-Z_j^k)}
z_i^{k+1}=z_{i}^k-\frac{P(z_i^k)}{\prod_{i\neq j}(z_i^k-z_j^k)}
 \end{equation}
 %%\end{center}
-where $Z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
+where $z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
 iteration $k$.
 
 
@@ -164,11 +164,11 @@ in the following form by Ehrlich~\cite{Ehrlich67} and
 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
 %%\begin{center}
 \begin{equation}
Z_i^{k+1}=Z_i^k-\frac{1}{{\frac {P'(Z_i^k)} {P(Z_i^k)}}-{\sum_{i\neq j}(Z_i^k-Z_j^k)}}.
z_i^{k+1}=z_i^k-\frac{1}{{\frac {P'(z_i^k)} {P(z_i^k)}}-{\sum_{i\neq j}\frac{1}{(z_i^k-z_j^k)}}}.
 \end{equation}
 %%\end{center}
-where $P'(Z)$ is the polynomial derivative of $P$ evaluated in the
-point $Z$.
+where $P'(z)$ is the polynomial derivative of $P$ evaluated in the
+point $z$.
 
 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
@@ -201,8 +201,7 @@ where it takes up to 3300 seconds to obtain the same results, the authors show a
 Very few works had been since this last work until the appearing of
 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
 parallel computing platform and a programming model invented by
-NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of
-of CPUs. However, CUDA adopts a totally new computing architecture to use the
+NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the
 hardware resources provided by GPU in order to offer a stronger
 computing ability to the massive data computing.
 
@@ -214,9 +213,9 @@ the sequential implementation on a single CPU for high degree
 polynomials of about 48000. To our knowledge, it is the first time such high degree polynomials are numerically solved.
 
 
-In this paper, we focus on the implementation of the Aberth method for
-high degree polynomials on GPU. The paper is organised as fellows. Initially, we recall the Aberth method in Section.\ref{sec1}. Improvements for the Aberth method are proposed in Section.\ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section.\ref{secStateofArt}.
-In Section.4 we propose a parallel implementation of the Aberth method on GPU and discuss it. Section 5 presents and investigates our implementation and experimental study results. Finally, Section 6 concludes this paper and gives some hints for future research directions in this topic.  
+In this paper, we focus on the implementation of the Ehrlich-Aberth method for
+high degree polynomials on GPU. The paper is organized as fellows. Initially, we recall the Ehrlich-Aberth method in Section \ref{sec1}. Improvements for the Ehrlich-Aberth method are proposed in Section \ref{sec2}. Related work to the implementation of simultaneous methods using a parallel approach is presented in Section \ref{secStateofArt}.
+In Section \ref{sec5} we propose a parallel implementation of the Ehrlich-Aberth method on GPU and discuss it. Section \ref{sec6} presents and investigates our implementation and experimental study results. Finally, Section\ref{sec7} 6 concludes this paper and gives some hints for future research directions in this topic.  
 
 \section{The Sequential Aberth method}
 \label{sec1}
@@ -240,10 +239,10 @@ Differentiating the rational function $R_{i}(z)$ and applying the
 Newton method, we have:
 
 \begin{equation}
-\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{i}}}, i=1,2,...,n
+\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
 \end{equation}
-
-Substituting $x_{j}$ for z we obtain the Aberth iteration method.
+where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
+Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.
 
 In the fellowing we present the main stages of the running of the Aberth method.
 
@@ -264,7 +263,7 @@ The initial guess is very important since the number of steps needed by the iter
 a given approximation strongly depends on it.
 In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
 equi-spaced points on a circle of center 0 and radius r, where r is
-an upper bound to the moduli of the zeros. Later, Bini et al.~\cite{Bini96}
+an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
 performed this choice by selecting complex numbers along different
 circles and relies on the result of~\cite{Ostrowski41}.
 
@@ -281,14 +280,14 @@ u_{i}=2.|a_{i}|^{\frac{1}{i}};
 v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
 \end{equation}
 
-\subsection{Iterative Function $H_{i}$}
+\subsection{Iterative Function $H_{i}(z^{k})$}
 The operator used by the Aberth method is corresponding to the
 following equation which will enable the convergence towards
 polynomial solutions, provided all the roots are distinct.
 
 \begin{equation}
-H_{i}(z)=z_{i}-\frac{1}{\frac{p^{'}(z_{i})}{p(z_{i})}-\sum_{j\neq
-i}{\frac{1}{z_{i}-z_{j}}}}
+H_{i}(z^{k+1})=z_{i}^{k}-\frac{1}{\frac{p^{'}(z_{i}^{k})}{p(z_{i}^{k})}-\sum_{j=1,j\neq
+i}^{j=n}{\frac{1}{z_{i}^{k}-z_{j}^{k}}}}
 \end{equation}
 
 \subsection{Convergence Condition}
@@ -299,7 +298,7 @@ converges sufficiently when :
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
 \forall i \in
-[1,n];\frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}<\xi
+[1,n];\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}<\xi
 \end{equation}
 
 
@@ -332,22 +331,22 @@ propose to use the logarithm and the exponential of a complex in order to comput
 Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defexpcomplex}) operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
-Applying this solution for the Aberth method we obtain the
+Applying this solution for the Ehrlich-Aberth method we obtain the
 iteration function with logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
-H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left(
-p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln
-\left(1-Q(z_{k})\right)\right),
+H_{i}(z^{k+1})=z_{i}^{k}-\exp \left(\ln \left(
+p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
+\left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
 
 where:
 
 \begin{equation}
 \label{Log_H1}
-Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left(
-\sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right).
+Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}^{i}))+\ln \left(
+\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
 \end{equation}
 
 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as:
@@ -466,7 +465,8 @@ provides two read-only memory spaces, the constant space and the
 texture space, which reside in external DRAM, and are accessed via
 read-only caches.
 
-\subsection{ The implementation of Aberth method on GPU}
+\section{ The implementation of Aberth method on GPU}
+\label{sec5}
 %%\subsection{A CUDA implementation of the Aberth's method }
 %%\subsection{A GPU implementation of the Aberth's method }
 
@@ -510,15 +510,15 @@ In this sequential algorithm, one CPU thread  executes all the steps. Let us loo
 There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
 
 \begin{equation}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}}}, i=1,...,n.
+H_{i}(z^{k+1})=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
 \end{equation}
 
 With the Gauss-seidel iteration, we have:
 \begin{equation}
 \label{eq:Aberth-H-GS}
-H(i,z^{k+1})=\frac{p(z^{(k)}_{i})}{p'(z^{(k)}_{i})-p(z^{(k)}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{(k)}_{i}-z^{(k+1)}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{(k)}_{i}-z^{(k)}_{j}})}, i=1,...,n.
+H_{i}(z^{k+1})=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
 \end{equation}
-
+%%Here a finiched my revision %%
 Using Equation.~\ref{eq:Aberth-H-GS} for the update sub-step of $H(i,z^{k+1})$, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
 
 The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
@@ -609,7 +609,7 @@ The kernels terminate it computations when all the roots converge. Finally, the
 or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
 %%HIER END MY REVISIONS (SIDER)
 \section{Experimental study}
-
+\label{sec6}
 \subsection{Definition of the used polynomials }
 We study two categories of polynomials : the sparse polynomials and the full polynomials.
 \paragraph{A sparse polynomial}: is a polynomial for which only some coefficients are not null. We use in the following polonymial for which the roots are distributed on 2 distinct circles :
@@ -731,7 +731,7 @@ This figure show the execution time of the both algorithm EA and DK with sparse
 
 
 \section{Conclusion and perspective}
-
+\label{sec7}
 \bibliography{mybibfile}
 
 \end{document}