]> AND Private Git Repository - mpi-energy.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use \eqref to reference equations.
authorArnaud Giersch <arnaud.giersch@univ-fcomte.fr>
Thu, 22 May 2014 14:58:00 +0000 (16:58 +0200)
committerArnaud Giersch <arnaud.giersch@univ-fcomte.fr>
Thu, 22 May 2014 14:59:00 +0000 (16:59 +0200)
paper.tex

index 949c10ca07224683d85186f5f19c9c820da0af5d..a7860cde56555bd9840f7476665629365571ae50 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -208,7 +208,7 @@ two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is on, the latter is only consumed during
 computation times.  The dynamic power $P_{dyn}$ is related to the switching
 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
-operational frequency $f$, as shown in EQ~(\ref{eq:pd}).
+operational frequency $f$, as shown in EQ~\eqref{eq:pd}.
 \begin{equation}
   \label{eq:pd}
   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
@@ -237,7 +237,7 @@ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot f$ with some
 constant $\beta$.  This equation is used to study the change of the dynamic
 voltage with respect to various frequency values in~\cite{3}.  The reduction
 process of the frequency can be expressed by the scaling factor $S$ which is the
-ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
+ratio between the maximum and the new frequency as in EQ~\eqref{eq:s}.
 \begin{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
@@ -250,7 +250,7 @@ increase of the static energy because the execution time is increased~\cite{36}.
 If the tasks are sorted according to their execution times before scaling in a
 descending order, the total energy consumption model for a parallel homogeneous
 platform, as presented by Rauber and Rünger~\cite{3}, can be written as a
-function of the scaling factor $S$, as in EQ~(\ref{eq:energy}).
+function of the scaling factor $S$, as in EQ~\eqref{eq:energy}.
 
 \begin{equation}
   \label{eq:energy}
@@ -263,16 +263,16 @@ where $N$ is the number of parallel nodes, $T_i$ for $i=1,\dots,N$ are
 the execution times and scaling factors of the sorted tasks.  Therefore, $T1$ is
 the time of the slowest task, and $S_1$ its scaling factor which should be the
 highest because they are proportional to the time values $T_i$.  The scaling
-factors are computed as in EQ~(\ref{eq:si}).
+factors are computed as in EQ~\eqref{eq:si}.
 \begin{equation}
   \label{eq:si}
   S_i = S \cdot \frac{T_1}{T_i}
       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
 \end{equation}
-In this paper we use Rauber and Rünger's energy model, EQ~(\ref{eq:energy}), because it can be applied to homogeneous clusters if the communication time is taken in consideration. Moreover, we compare our algorithm with Rauber and Rünger's scaling factor selection
+In this paper we use Rauber and Rünger's energy model, EQ~\eqref{eq:energy}, because it can be applied to homogeneous clusters if the communication time is taken in consideration. Moreover, we compare our algorithm with Rauber and Rünger's scaling factor selection
 method which uses the same energy model.  In their method, the optimal scaling factor is
-computed by minimizing the derivation of EQ~(\ref{eq:energy}) which produces
-EQ~(\ref{eq:sopt}).
+computed by minimizing the derivation of EQ~\eqref{eq:energy} which produces
+EQ~\eqref{eq:sopt}.
 
 \begin{equation}
   \label{eq:sopt}
@@ -299,7 +299,7 @@ or receiving a message till the message is synchronously sent or received.  To
 be able to predict the execution time of MPI program, the communication time and
 the computation time for the slowest task must be measured before scaling.  These
 times are used to predict the execution time for any MPI program as a function
-of the new scaling factor as in EQ~(\ref{eq:tnew}).
+of the new scaling factor as in EQ~\eqref{eq:tnew}.
 \begin{equation}
   \label{eq:tnew}
  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
@@ -339,7 +339,7 @@ performance is not in the same direction.  In other words, the normalized energy
 and the performance curves are not at the same direction see
 Figure~\ref{fig:rel}\subref{fig:r2}.  While the main goal is to optimize the
 energy and performance in the same time.  According to the
-equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the scaling factor $S$ reduce
+equations~\eqref{eq:enorm} and~\eqref{eq:pnorm}, the scaling factor $S$ reduce
 both the energy and the performance simultaneously.  But the main objective is
 to produce maximum energy reduction with minimum performance reduction.  Many
 researchers used different strategies to solve this nonlinear problem for
@@ -367,8 +367,8 @@ follows:
   \label{fig:rel}
 \end{figure}
 Then, we can model our objective function as finding the maximum distance
-between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
-curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors.  This
+between the energy curve EQ~\eqref{eq:enorm} and the inverse of performance
+curve EQ~\eqref{eq:pnorm_en} over all available scaling factors.  This
 represents the minimum energy consumption with minimum execution time (better
 performance) at the same time, see Figure~\ref{fig:rel}\subref{fig:r1}.  Then
 our objective function has the following form:
@@ -379,7 +379,7 @@ our objective function has the following form:
        \overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} )
 \end{equation}
 where $F$ is the number of available frequencies. Then we can select the optimal
-scaling factor that satisfies EQ~(\ref{eq:max}).  Our objective function can
+scaling factor that satisfies EQ~\eqref{eq:max}.  Our objective function can
 work with any energy model or static power values stored in a data file.
 Moreover, this function works in optimal way when the energy curve has a convex
 form over the available frequency scaling factors as shown in~\cite{15,3,19}.
@@ -472,7 +472,7 @@ program.
 \end{figure}
 After obtaining the optimal scaling factor, the program calculates the new
 frequency $F_i$ for each task proportionally to its time value $T_i$.  By
-substitution of EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we can calculate the new
+substitution of EQ~\eqref{eq:s} in EQ~\eqref{eq:si}, we can calculate the new
 frequency $F_i$ as follows:
 \begin{equation}
   \label{eq:fi}
@@ -480,14 +480,14 @@ frequency $F_i$ as follows:
 \end{equation}
 According to this equation all the nodes may have the same frequency value if
 they have balanced workloads, otherwise, they take different frequencies when
-having imbalanced workloads.  Thus, EQ~(\ref{eq:fi}) adapts the frequency of the
+having imbalanced workloads.  Thus, EQ~\eqref{eq:fi} adapts the frequency of the
 CPU to the nodes' workloads to maintain the performance of the program.
 
 \section{Experimental results}
 \label{sec.expe}
 Our experiments are executed on the simulator SimGrid/SMPI v3.10.  We configure
 the simulator to use a homogeneous cluster with one core per node.  
-%The detailed characteristics of our platform file are shown in Table~(\ref{table:platform}).  
+%The detailed characteristics of our platform file are shown in Table~\ref{table:platform}.
 Each node in the cluster has 18 frequency values
 from \np[GHz]{2.5} to \np[MHz]{800} with \np[MHz]{100} difference between each
 two successive frequencies. The nodes are connected via an ethernet network with 1Gbit/s  bandwidth. 
@@ -495,12 +495,12 @@ two successive frequencies. The nodes are connected via an ethernet network with
 \subsection{Performance prediction verification}
 
 In this section we evaluate the precision of our performance prediction method
-based on EQ~(\ref{eq:tnew}) by applying it to the NAS benchmarks.  The NAS programs
+based on EQ~\eqref{eq:tnew} by applying it to the NAS benchmarks.  The NAS programs
 are executed with the class B option to compare the real execution time with
 the predicted execution time.  Each program runs offline with all available
 scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real
 execution time values.  These scaling factors are computed by dividing the
-maximum frequency by the new one see EQ~(\ref{eq:s}).
+maximum frequency by the new one see EQ~\eqref{eq:s}.
 \begin{figure}
   \centering
   \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill%
@@ -526,7 +526,7 @@ For each instance the benchmarks were executed on a number of processors
 proportional to the size of the class.  Each class represents the problem size
 ascending from class A to C.  Additionally, depending on some speed up points
 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
-respectively.  Depending on EQ~(\ref{eq:energy}), we measure the energy
+respectively.  Depending on EQ~\eqref{eq:energy}, we measure the energy
 consumption for all the NAS MPI programs while assuming that the dynamic power
 with the highest frequency is equal to \np[W]{20} and the power static is equal
 to \np[W]{4} for all experiments.  These power values were also used by Rauber
@@ -573,7 +573,7 @@ savings).
 In this section, we compare our scaling factor selection method with Rauber and
 Rünger methods~\cite{3}.  They had two scenarios, the first is to reduce energy
 to the optimal level without considering the performance as in
-EQ~(\ref{eq:sopt}).  We refer to this scenario as $R_{E}$.  The second scenario
+EQ~\eqref{eq:sopt}.  We refer to this scenario as $R_{E}$.  The second scenario
 is similar to the first except setting the slower task to the maximum frequency
 (when the scale $S=1$) to keep the performance from degradation as mush as
 possible.  We refer to this scenario as $R_{E-P}$.  While we refer to our