]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/ecrc-template-1.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction of the multi-cores section
[mpi-energy2.git] / mpi-energy2-extension / ecrc-template-1.tex
1
2 % Template for Elsevier CRC journal article
3 % version 1.1 dated 16 March 2010
4
5 % This file (c) 2010 Elsevier Ltd.  Modifications may be freely made,
6 % provided the edited file is saved under a different name
7
8 % This file contains modifications for Procedia Computer Science
9 % but may easily be adapted to other journals
10
11 % Changes since version 1.0
12 % - elsarticle class option changed from 1p to 3p (to better reflect CRC layout)
13
14 %-----------------------------------------------------------------------------------
15
16 %% This template uses the elsarticle.cls document class and the extension package ecrc.sty
17 %% For full documentation on usage of elsarticle.cls, consult the documentation "elsdoc.pdf"
18 %% Further resources available at http://www.elsevier.com/latex
19
20 %-----------------------------------------------------------------------------------
21
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%                                          %%
25 %% Important note on usage                  %%
26 %% -----------------------                  %%
27 %% This file must be compiled with PDFLaTeX %%
28 %% Using standard LaTeX will not work!      %%
29 %%                                          %%
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32
33 %% The '3p' and 'times' class options of elsarticle are used for Elsevier CRC
34 \documentclass[3p,times]{elsarticle-1}
35
36 %% The `ecrc' package must be called to make the CRC functionality available
37 \usepackage{ecrc}
38 \usepackage[T1]{fontenc}
39 \usepackage[utf8]{inputenc}
40 \usepackage[english]{babel}
41 \usepackage{algpseudocode}
42 \usepackage{graphicx}
43 \usepackage{algorithm}
44 \usepackage{subfig}
45 \usepackage{amsmath}
46 \usepackage{url}
47 \usepackage{multirow}
48 \DeclareUrlCommand\email{\urlstyle{same}}
49
50 \usepackage[autolanguage,np]{numprint}
51 \AtBeginDocument{%
52   \renewcommand*\npunitcommand[1]{\text{#1}}
53   \npthousandthpartsep{}}
54
55 \usepackage{xspace}
56 \usepackage[textsize=footnotesize]{todonotes}
57 \newcommand{\AG}[2][inline]{%
58   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
59 \newcommand{\JC}[2][inline]{%
60   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
61
62 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
63
64 %% used to put some subscripts lower, and make them more legible
65 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
66
67 \newcommand{\CL}{\Xsub{C}{L}}
68 \newcommand{\Dist}{\mathit{Dist}}
69 \newcommand{\EdNew}{\Xsub{E}{dNew}}
70 \newcommand{\Eind}{\Xsub{E}{ind}}
71 \newcommand{\Enorm}{\Xsub{E}{Norm}}
72 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
73 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
74 \newcommand{\Es}{\Xsub{E}{S}}
75 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
76 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
77 \newcommand{\Fnew}{\Xsub{F}{new}}
78 \newcommand{\Ileak}{\Xsub{I}{leak}}
79 \newcommand{\Kdesign}{\Xsub{K}{design}}
80 \newcommand{\MaxDist}{\mathit{Max}\Dist}
81 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
82 \newcommand{\Ntrans}{\Xsub{N}{trans}}
83 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
84 \newcommand{\PdNew}{\Xsub{P}{dNew}}
85 \newcommand{\PdOld}{\Xsub{P}{dOld}}
86 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
87 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
88 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
89 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
90 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
91 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
92 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
93 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
94 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
95 \newcommand{\Tnew}{\Xsub{T}{New}}
96 \newcommand{\Told}{\Xsub{T}{Old}}
97
98
99
100
101 %% The ecrc package defines commands needed for running heads and logos.
102 %% For running heads, you can set the journal name, the volume, the starting page and the authors
103
104 %% set the volume if you know. Otherwise `00'
105 \volume{00}
106
107 %% set the starting page if not 1
108 \firstpage{1}
109
110 %% Give the name of the journal
111 \journalname{Procedia Computer Science}
112
113 %% Give the author list to appear in the running head
114 %% Example \runauth{C.V. Radhakrishnan et al.}
115 \runauth{}
116
117 %% The choice of journal logo is determined by the \jid and \jnltitlelogo commands.
118 %% A user-supplied logo with the name <\jid>logo.pdf will be inserted if present.
119 %% e.g. if \jid{yspmi} the system will look for a file yspmilogo.pdf
120 %% Otherwise the content of \jnltitlelogo will be set between horizontal lines as a default logo
121
122 %% Give the abbreviation of the Journal.
123 \jid{procs}
124
125 %% Give a short journal name for the dummy logo (if needed)
126 \jnltitlelogo{Procedia Computer Science}
127
128 %% Hereafter the template follows `elsarticle'.
129 %% For more details see the existing template files elsarticle-template-harv.tex and elsarticle-template-num.tex.
130
131 %% Elsevier CRC generally uses a numbered reference style
132 %% For this, the conventions of elsarticle-template-num.tex should be followed (included below)
133 %% If using BibTeX, use the style file elsarticle-num.bst
134
135 %% End of ecrc-specific commands
136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137
138 %% The amssymb package provides various useful mathematical symbols
139 \usepackage{amssymb}
140 %% The amsthm package provides extended theorem environments
141 %% \usepackage{amsthm}
142
143 %% The lineno packages adds line numbers. Start line numbering with
144 %% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on
145 %% for the whole article with \linenumbers after \end{frontmatter}.
146 %% \usepackage{lineno}
147
148 %% natbib.sty is loaded by default. However, natbib options can be
149 %% provided with \biboptions{...} command. Following options are
150 %% valid:
151
152 %%   round  -  round parentheses are used (default)
153 %%   square -  square brackets are used   [option]
154 %%   curly  -  curly braces are used      {option}
155 %%   angle  -  angle brackets are used    <option>
156 %%   semicolon  -  multiple citations separated by semi-colon
157 %%   colon  - same as semicolon, an earlier confusion
158 %%   comma  -  separated by comma
159 %%   numbers-  selects numerical citations
160 %%   super  -  numerical citations as superscripts
161 %%   sort   -  sorts multiple citations according to order in ref. list
162 %%   sort&compress   -  like sort, but also compresses numerical citations
163 %%   compress - compresses without sorting
164 %%
165 %% \biboptions{comma,round}
166
167 % \biboptions{}
168
169 % if you have landscape tables
170 \usepackage[figuresright]{rotating}
171
172 % put your own definitions here:
173 %   \newcommand{\cZ}{\cal{Z}}
174 %   \newtheorem{def}{Definition}[section]
175 %   ...
176
177 % add words to TeX's hyphenation exception list
178 %\hyphenation{author another created financial paper re-commend-ed Post-Script}
179
180 % declarations for front matter
181
182 \begin{document}
183
184 \begin{frontmatter}
185
186 %% Title, authors and addresses
187
188 %% use the tnoteref command within \title for footnotes;
189 %% use the tnotetext command for the associated footnote;
190 %% use the fnref command within \author or \address for footnotes;
191 %% use the fntext command for the associated footnote;
192 %% use the corref command within \author for corresponding author footnotes;
193 %% use the cortext command for the associated footnote;
194 %% use the ead command for the email address,
195 %% and the form \ead[url] for the home page:
196 %%
197 %% \title{Title\tnoteref{label1}}
198 %% \tnotetext[label1]{}
199 %% \author{Name\corref{cor1}\fnref{label2}}
200 %% \ead{email address}
201 %% \ead[url]{home page}
202 %% \fntext[label2]{}
203 %% \cortext[cor1]{}
204 %% \address{Address\fnref{label3}}
205 %% \fntext[label3]{}
206
207 \dochead{}
208 %% Use \dochead if there is an article header, e.g. \dochead{Short communication}
209
210 \title{}
211
212 %% use optional labels to link authors explicitly to addresses:
213 %% \author[label1,label2]{<author name>}
214 %% \address[label1]{<address>}
215 %% \address[label2]{<address>}
216
217 \author{}
218
219 \address{}
220
221 \begin{abstract}
222 %% Text of abstract
223 \end{abstract}
224
225 \begin{keyword}
226 %% keywords here, in the form: keyword \sep keyword
227
228 %% MSC codes here, in the form: \MSC code \sep code
229 %% or \MSC[2008] code \sep code (2000 is the default)
230
231 \end{keyword}
232
233 \end{frontmatter}
234
235 %%
236 %% Start line numbering here if you want
237 %%
238 % \linenumbers
239
240 %% main text
241
242
243 \section{Introduction}
244 \label{sec.intro}
245 \textcolor{blue}{
246 The need for more computing power is continually increasing. To partially
247 satisfy this need, most supercomputers constructors just put more computing
248 nodes in their platform. The resulting platforms may achieve higher floating
249 point operations per second (FLOPS), but the energy consumption and the heat
250 dissipation are also increased.  As an example, the Chinese supercomputer
251 Tianhe-2 had the highest FLOPS in June 2015  according to the Top500 list
252 \cite{TOP500_Supercomputers_Sites}.  However, it was also the most power hungry
253 platform with its over 3 million cores consuming around 17.8 megawatts.
254 Moreover, according to the U.S.  annual energy outlook 2015
255 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
256 was approximately equal to \$70.  Therefore, the price of the energy consumed by
257 the Tianhe-2 platform is approximately more than \$10 million each year.  The
258 computing platforms must be more energy efficient and offer the highest number
259 of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN
260 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
261 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
262 50.32 kilowatts.
263 }
264
265 Besides platform improvements, there are many software and hardware techniques
266 to lower the energy consumption of these platforms, such as scheduling, DVFS,
267 \dots{} DVFS is a widely used process to reduce the energy consumption of a
268 processor by lowering its frequency
269 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
270 the number of FLOPS executed by the processor which may increase the execution
271 time of the application running over that processor.  Therefore, researchers use
272 different optimization strategies to select the frequency that gives the best
273 trade-off between the energy reduction and performance degradation ratio. In
274 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
275 the energy consumption of message passing iterative applications running over
276 homogeneous  and heterogeneous clusters respectively.  
277 The results of the experiments show significant energy
278 consumption reductions. In this paper, a new frequency selecting algorithm
279 adapted for heterogeneous platform is presented. It selects the vector of
280 frequencies, for a heterogeneous grid platform running a message passing iterative
281 application, that simultaneously tries to offer the maximum energy reduction and
282 minimum performance degradation ratio. The algorithm has a very small overhead,
283 works online and does not need any training or profiling.
284
285 \textcolor{blue}{
286 This paper is organized as follows: Section~\ref{sec.relwork} presents some
287 related works from other authors.  Section~\ref{sec.exe} describes how the
288 execution time of message passing programs can be predicted.  It also presents
289 an energy model that predicts the energy consumption of an application running
290 over a heterogeneous grid. Section~\ref{sec.compet} presents the
291 energy-performance objective function that maximizes the reduction of energy
292 consumption while minimizing the degradation of the program's performance.
293 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
294 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
295 NAS parallel benchmarks and executing them on a grid'5000 testbed. 
296 It shows the results of running different scenarios using multi-cores and one core per node 
297 and comparing them. It also shows the results of running
298 three different power scenarios and comparing them. Moreover, it shows the
299 comparison results between the proposed method and an existing method.  Finally,
300 in Section~\ref{sec.concl} the paper ends with a summary and some future works.}
301
302 \section{Related works}
303 \label{sec.relwork}
304
305 DVFS is a technique used in modern processors to scale down both the voltage and
306 the frequency of the CPU while computing, in order to reduce the energy
307 consumption of the processor. DVFS is also allowed in GPUs to achieve the same
308 goal. Reducing the frequency of a processor lowers its number of FLOPS and may
309 degrade the performance of the application running on that processor, especially
310 if it is compute bound. Therefore selecting the appropriate frequency for a
311 processor to satisfy some objectives, while taking into account all the
312 constraints, is not a trivial operation.  Many researchers used different
313 strategies to tackle this problem. Some of them developed online methods that
314 compute the new frequency while executing the application, such
315 as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
316 Others used offline methods that may need to run the application and profile
317 it before selecting the new frequency, such
318 as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
319 The methods could be heuristics, exact or brute force methods that satisfy
320 varied objectives such as energy reduction or performance. They also could be
321 adapted to the execution's environment and the type of the application such as
322 sequential, parallel or distributed architecture, homogeneous or heterogeneous
323 platform, synchronous or asynchronous application, \dots{}
324
325 In this paper, we are interested in reducing energy for message passing
326 iterative synchronous applications running over heterogeneous grid platforms.  Some
327 works have already been done for such platforms and they can be classified into
328 two types of heterogeneous platforms:
329 \begin{itemize}
330 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
331 \item the platform is only composed of heterogeneous CPUs.
332 \end{itemize}
333
334 For the first type of platform, the computing intensive parallel tasks are
335 executed on the GPUs and the rest are executed on the CPUs.  Luley et
336 al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
337 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
338 goal was to maximize the energy efficiency of the platform during computation by
339 maximizing the number of FLOPS per watt generated.
340 In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
341 al. developed a scheduling algorithm that distributes workloads proportional to
342 the computing power of the nodes which could be a GPU or a CPU. All the tasks
343 must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
344 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
345 DVFS gave better energy and performance efficiency than other clusters only
346 composed of CPUs.
347
348 The work presented in this paper concerns the second type of platform, with
349 heterogeneous CPUs.  Many methods were conceived to reduce the energy
350 consumption of this type of platform.  Naveen et
351 al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
352 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
353 the sum of slack times that happen during synchronous communications) by
354 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
355 Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an
356 algorithm that divides the executed tasks into two types: the critical and non
357 critical tasks. The algorithm scales down the frequency of non critical tasks
358 proportionally to their slack and communication times while limiting the
359 performance degradation percentage to less than \np[\%]{10}.
360 In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
361 heterogeneous cluster composed of two types of Intel and AMD processors. They
362 use a gradient method to predict the impact of DVFS operations on performance.
363 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
364 \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
365 frequencies for a specified heterogeneous cluster are selected offline using
366 some heuristic.  Chen et
367 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
368 programming approach to minimize the power consumption of heterogeneous servers
369 while respecting given time constraints.  This approach had considerable
370 overhead.  In contrast to the above described papers, this paper presents the
371 following contributions :
372 \begin{enumerate}
373 \item two new energy and performance models for message passing iterative
374   synchronous applications running over a heterogeneous grid platform. Both models
375   take into account communication and slack times. The models can predict the
376   required energy and the execution time of the application.
377
378 \item a new online frequency selecting algorithm for heterogeneous grid
379   platforms. The algorithm has a very small overhead and does not need any
380   training or profiling. It uses a new optimization function which
381   simultaneously maximizes the performance and minimizes the energy consumption
382   of a message passing iterative synchronous application.
383
384 \end{enumerate}
385
386
387
388 \section{The performance and energy consumption measurements on heterogeneous grid architecture}
389 \label{sec.exe}
390
391 \subsection{The execution time of message passing distributed iterative
392   applications on a heterogeneous platform}
393
394 In this paper, we are interested in reducing the energy consumption of message
395 passing distributed iterative synchronous applications running over
396 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
397 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
398 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
399
400 \begin{figure}[!t]
401   \centering
402   \includegraphics[scale=0.6]{fig/commtasks}
403   \caption{Parallel tasks on a heterogeneous platform}
404   \label{fig:heter}
405 \end{figure}
406
407 The overall execution time of a distributed iterative synchronous application 
408 over a heterogeneous grid consists of the sum of the computation time and 
409 the communication time for every iteration on a node. However, due to the
410 heterogeneous computation power of the computing clusters, slack times may occur
411 when fast nodes have to wait, during synchronous communications, for the slower
412 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
413 overall execution time of the program is the execution time of the slowest task 
414 which has the highest computation time and no slack time.
415
416 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
417 modern processors, that reduces the energy consumption of a CPU by scaling
418 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
419 and consequently its computing power, the execution time of a program running
420 over that scaled down processor may increase, especially if the program is
421 compute bound.  The frequency reduction process can be  expressed by the scaling
422 factor S which is the ratio between  the maximum and the new frequency of a CPU
423 as in (\ref{eq:s}).
424 \begin{equation}
425   \label{eq:s}
426   S = \frac{\Fmax}{\Fnew}
427 \end{equation}
428 The execution time of a compute bound sequential program is linearly
429 proportional to the frequency scaling factor $S$.  On the other hand, message
430 passing distributed applications consist of two parts: computation and
431 communication.  The execution time of the computation part is linearly
432 proportional to the frequency scaling factor $S$ but the communication time is
433 not affected by the scaling factor because the processors involved remain idle
434 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
435 communication time for a task is the summation of periods of time that begin
436 with an MPI call for sending or receiving a message until the message is
437 synchronously sent or received.
438
439 Since in a heterogeneous grid each cluster has different characteristics,
440 especially different frequency gears, when applying DVFS operations on the nodes 
441 of these clusters, they may get different scaling factors represented by a scaling vector:
442 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
443 be able to predict the execution time of message passing synchronous iterative
444 applications running over a heterogeneous grid, for different vectors of
445 scaling factors, the communication time and the computation time for all the
446 tasks must be measured during the first iteration before applying any DVFS
447 operation. Then the execution time for one iteration of the application with any
448 vector of scaling factors can be predicted using (\ref{eq:perf}).
449 \begin{equation}
450   \label{eq:perf}
451   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
452   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
453 \end{equation}
454
455 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
456 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
457 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
458 first  iteration. The model computes the maximum computation time with scaling factor 
459 from each node added to the communication time of the slowest node in the slowest cluster $h$.
460 It means only the communication time without any slack time is taken into account.  
461 Therefore, the execution time of the iterative application is equal to
462 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
463 number of iterations of that application.
464
465 This prediction model is developed from the model to predict the execution time
466 of message passing distributed applications for homogeneous and heterogeneous clusters
467 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
468 used in the method to optimize both the energy consumption and the performance
469 of iterative methods, which is presented in the following sections.
470
471
472 \subsection{Energy model for heterogeneous grid platform}
473
474 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
475   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
476   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
477 a processor into two power metrics: the static and the dynamic power.  While the
478 first one is consumed as long as the computing unit is turned on, the latter is
479 only consumed during computation times.  The dynamic power $\Pd$ is related to
480 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
481 and operational frequency $F$, as shown in (\ref{eq:pd}).
482 \begin{equation}
483   \label{eq:pd}
484   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
485 \end{equation}
486 The static power $\Ps$ captures the leakage power as follows:
487 \begin{equation}
488   \label{eq:ps}
489    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
490 \end{equation}
491 where V is the supply voltage, $\Ntrans$ is the number of transistors,
492 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
493 technology dependent parameter.  The energy consumed by an individual processor
494 to execute a given program can be computed as:
495 \begin{equation}
496   \label{eq:eind}
497   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
498 \end{equation}
499 where $T$ is the execution time of the program, $\Tcp$ is the computation
500 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
501 communication and no slack time.
502
503 The main objective of DVFS operation is to reduce the overall energy
504 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
505 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
506 F$ with some constant $\beta$.~This equation is used to study the change of the
507 dynamic voltage with respect to various frequency values
508 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
509 frequency can be expressed by the scaling factor $S$ which is the ratio between
510 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
511 power schemes supplied by the operating system's kernel to lower a core's
512 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
513 follows:
514 \begin{equation}
515   \label{eq:fnew}
516    \Fnew = S^{-1} \cdot \Fmax
517 \end{equation}
518 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
519 equation for dynamic power consumption:
520 \begin{multline}
521   \label{eq:pdnew}
522    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
523    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
524 \end{multline}
525 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
526 new frequency and the maximum frequency respectively.
527
528 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
529 $S^{-3}$ when reducing the frequency by a factor of
530 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
531 proportional to the frequency of a CPU, the computation time is increased
532 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
533 by the new time of computation and is given by the following equation:
534 \begin{equation}
535   \label{eq:Edyn}
536    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
537 \end{equation}
538 The static power is related to the power leakage of the CPU and is consumed
539 during computation and even when idle. As
540 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
541 the static power of a processor is considered as constant during idle and
542 computation periods, and for all its available frequencies.  The static energy
543 is the static power multiplied by the execution time of the program.  According
544 to the execution time model in (\ref{eq:perf}), the execution time of the
545 program is the sum of the computation and the communication times. The
546 computation time is linearly related to the frequency scaling factor, while this
547 scaling factor does not affect the communication time.  The static energy of a
548 processor after scaling its frequency is computed as follows:
549 \begin{equation}
550   \label{eq:Estatic}
551   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
552 \end{equation}
553
554 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
555 different dynamic and static powers from the nodes of the other clusters, 
556 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
557 message passing iterative application is load balanced, the computation time of each CPU $j$ 
558 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
559 computed in order to decrease the overall energy consumption of the application
560 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
561 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
562 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
563 communication times. While the dynamic energy is computed according to the
564 frequency scaling factor and the dynamic power of each node as in
565 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
566 of one iteration multiplied by the static power of each processor.  The overall
567 energy consumption of a message passing distributed application executed over a
568 heterogeneous grid platform during one iteration is the summation of all dynamic and
569 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
570 \begin{multline}
571   \label{eq:energy}
572  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
573  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
574   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
575   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
576 \end{multline}
577
578 Reducing the frequencies of the processors according to the vector of scaling
579 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
580 and thus, increase the static energy because the execution time is
581 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
582 for the iterative application can be measured by measuring the energy
583 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
584 of iterations of that application.
585
586 \section{Optimization of both energy consumption and performance}
587 \label{sec.compet}
588
589 Using the lowest frequency for each processor does not necessarily give the most
590 energy efficient execution of an application. Indeed, even though the dynamic
591 power is reduced while scaling down the frequency of a processor, its
592 computation power is proportionally decreased. Hence, the execution time might
593 be drastically increased and during that time, dynamic and static powers are
594 being consumed.  Therefore, it might cancel any gains achieved by scaling down
595 the frequency of all nodes to the minimum and the overall energy consumption of
596 the application might not be the optimal one.  It is not trivial to select the
597 appropriate frequency scaling factor for each processor while considering the
598 characteristics of each processor (computation power, range of frequencies,
599 dynamic and static powers) and the task executed (computation/communication
600 ratio). The aim being to reduce the overall energy consumption and to avoid
601 increasing significantly the execution time.  In our previous
602 work~\cite{Our_first_paper,pdsec2015}, we proposed a method that selects the optimal
603 frequency scaling factor for a homogeneous and heterogeneous clusters executing a message passing
604 iterative synchronous application while giving the best trade-off between the
605 energy consumption and the performance for such applications.  In this work we
606 are interested in heterogeneous grid as described above.  Due to the
607 heterogeneity of the processors, a vector of scaling factors should be selected
608 and it must give the best trade-off between energy consumption and performance.
609
610 The relation between the energy consumption and the execution time for an
611 application is complex and nonlinear, Thus, unlike the relation between the
612 execution time and the scaling factor, the relation between the energy and the
613 frequency scaling factors is nonlinear, for more details refer
614 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
615 are not measured using the same metric.  To solve this problem, the execution
616 time is normalized by computing the ratio between the new execution time (after
617 scaling down the frequencies of some processors) and the initial one (with
618 maximum frequency for all nodes) as follows:
619 \begin{equation}
620   \label{eq:pnorm}
621   \Pnorm = \frac{\Tnew}{\Told}                 
622 \end{equation}
623
624
625 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
626 \begin{equation}
627   \label{eq:told}
628    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
629 \end{equation}
630 In the same way, the energy is normalized by computing the ratio between the
631 consumed energy while scaling down the frequency and the consumed energy with
632 maximum frequency for all  nodes:
633 \begin{equation}
634   \label{eq:enorm}
635   \Enorm = \frac{\Ereduced}{\Eoriginal} 
636 \end{equation}
637
638 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
639 computed as in (\ref{eq:eorginal}).
640
641
642 \begin{equation}
643   \label{eq:eorginal}
644     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
645      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
646 \end{equation}
647
648 While the main goal is to optimize the energy and execution time at the same
649 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
650 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
651 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
652 and the execution time simultaneously.  But the main objective is to produce
653 maximum energy reduction with minimum execution time reduction.
654
655 This problem can be solved by making the optimization process for energy and
656 execution time follow the same evolution according to the vector of scaling factors
657 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
658 normalized execution time is inverted which gives the normalized performance
659 equation, as follows:
660 \begin{equation}
661   \label{eq:pnorm_inv}
662   \Pnorm = \frac{\Told}{\Tnew}          
663 \end{equation}
664
665 \begin{figure}[!t]
666   \centering
667   \subfloat[Homogeneous cluster]{%
668     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
669
670   \subfloat[Heterogeneous grid]{%
671     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
672   \label{fig:rel}
673   \caption{The energy and performance relation}
674 \end{figure}
675
676 Then, the objective function can be modeled in order to find the maximum
677 distance between the energy curve (\ref{eq:enorm}) and the performance curve
678 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
679 represents the minimum energy consumption with minimum execution time (maximum
680 performance) at the same time, see Figure~\ref{fig:r1} or
681 Figure~\ref{fig:r2}. Then the objective function has the following form:
682 \begin{equation}
683   \label{eq:max}
684   \MaxDist =
685 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
686       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
687        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
688 \end{equation}
689 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
690 $F$ is the number of available frequencies for each node.  Then, the optimal set 
691 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
692 The objective function can work with any energy model or any power 
693 values for each node (static and dynamic powers). However, the most important 
694 energy reduction gain can be achieved when the energy curve has a convex form as shown 
695 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
696
697 \section{The scaling factors selection algorithm for  grids }
698 \label{sec.optim}
699
700 \begin{algorithm}
701   \begin{algorithmic}[1]
702     % \footnotesize
703     \Require ~
704     \begin{description}
705     \item [{$N$}] number of clusters in the grid.
706     \item [{$M$}] number of nodes in each cluster.
707     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
708     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
709     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
710     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
711     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
712     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
713     \end{description}
714     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
715
716     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
717     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
718     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
719     \If{(not the first frequency)}
720           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
721     \EndIf
722     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
723     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
724     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
725     \State $\Dist \gets 0 $
726     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
727         \If{(not the last freq. \textbf{and} not the slowest node)}
728         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
729         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
730         \EndIf
731        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
732        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
733        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
734        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
735       \If{$(\Pnorm - \Enorm > \Dist)$}
736         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
737         \State $\Dist \gets \Pnorm - \Enorm$
738       \EndIf
739     \EndWhile
740     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
741   \end{algorithmic}
742   \caption{Scaling factors selection algorithm}
743   \label{HSA}
744 \end{algorithm}
745
746 \begin{algorithm}
747   \begin{algorithmic}[1]
748     % \footnotesize
749     \For {$k=1$ to \textit{some iterations}}
750       \State Computations section.
751       \State Communications section.
752       \If {$(k=1)$}
753         \State Gather all times of computation and\newline\hspace*{3em}%
754                communication from each node.
755         \State Call Algorithm \ref{HSA}.
756         \State Compute the new frequencies from the\newline\hspace*{3em}%
757                returned optimal scaling factors.
758         \State Set the new frequencies to nodes.
759       \EndIf
760     \EndFor
761   \end{algorithmic}
762   \caption{DVFS algorithm}
763   \label{dvfs}
764 \end{algorithm}
765
766
767 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
768 scaling factors  that gives the best trade-off between minimizing the
769 energy consumption and maximizing the performance of a message passing
770 synchronous iterative application executed on a  grid. It works
771 online during the execution time of the iterative message passing program.  It
772 uses information gathered during the first iteration such as the computation
773 time and the communication time in one iteration for each node. The algorithm is
774 executed after the first iteration and returns a vector of optimal frequency
775 scaling factors that satisfies the objective function (\ref{eq:max}). The
776 program applies DVFS operations to change the frequencies of the CPUs according
777 to the computed scaling factors.  This algorithm is called just once during the
778 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
779 scaling algorithm is called in the iterative MPI program.
780
781 \begin{figure}[!t]
782   \centering
783   \includegraphics[scale=0.45]{fig/init_freq}
784   \caption{Selecting the initial frequencies}
785   \label{fig:st_freq}
786 \end{figure}
787
788 Nodes from distinct clusters in a grid have different computing powers, thus
789 while executing message passing iterative synchronous applications, fast nodes
790 have to wait for the slower ones to finish their computations before being able
791 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
792 periods are called idle or slack times.  The algorithm takes into account this
793 problem and tries to reduce these slack times when selecting the vector of the frequency
794 scaling factors. At first, it selects initial frequency scaling factors
795 that increase the execution times of fast nodes and minimize the differences
796 between the computation times of fast and slow nodes. The value of the initial
797 frequency scaling factor for each node is inversely proportional to its
798 computation time that was gathered from the first iteration. These initial
799 frequency scaling factors are computed as a ratio between the computation time
800 of the slowest node and the computation time of the node $i$ as follows:
801 \begin{equation}
802   \label{eq:Scp}
803   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
804 \end{equation}
805 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
806 algorithm computes the initial frequencies for all nodes as a ratio between the
807 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
808 follows:
809 \begin{equation}
810   \label{eq:Fint}
811   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
812 \end{equation}
813 If the computed initial frequency for a node is not available in the gears of
814 that node, it is replaced by the nearest available frequency.  In
815 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
816 ascending order and the frequencies of the faster nodes are scaled down
817 according to the computed initial frequency scaling factors.  The resulting new
818 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
819 frequencies can be considered as a higher bound for the search space of the
820 optimal vector of frequencies because selecting higher frequencies
821 than the higher bound will not improve the performance of the application and it
822 will increase its overall energy consumption.  Therefore the algorithm that
823 selects the frequency scaling factors starts the search method from these
824 initial frequencies and takes a downward search direction toward lower
825 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
826 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
827 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
828
829 Therefore, the algorithm iterates on all remaining frequencies, from the higher
830 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
831 energy consumption and performance and selects the optimal vector of the frequency scaling
832 factors. At each iteration the algorithm determines the slowest node
833 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
834 while it lowers the frequency of all other nodes by one gear.  The new overall
835 energy consumption and execution time are computed according to the new scaling
836 factors.  The optimal set of frequency scaling factors is the set that gives the
837 highest distance according to the objective function (\ref{eq:max}).
838
839 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
840 consumed energy for an application running on a homogeneous cluster and a
841  grid platform respectively while increasing the scaling factors. It can
842 be noticed that in a homogeneous cluster the search for the optimal scaling
843 factor should start from the maximum frequency because the performance and the
844 consumed energy decrease from the beginning of the plot. On the other hand, in
845 the  grid platform the performance is maintained at the beginning of the
846 plot even if the frequencies of the faster nodes decrease until the computing
847 power of scaled down nodes are lower than the slowest node. In other words,
848 until they reach the higher bound. It can also be noticed that the higher the
849 difference between the faster nodes and the slower nodes is, the bigger the
850 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
851
852
853 \section{Experimental results}
854 \label{sec.expe}
855 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid}, 
856 in this paper real experiments were conducted over the grid'5000 platform. 
857
858 \subsection{Grid'5000 architature and power consumption}
859 \label{sec.grid5000}
860 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
861 which is the French National Telecommunication Network for Technology.
862 Each site of the grid is composed of few heterogeneous 
863 computing clusters and each cluster contains many homogeneous nodes. In total,
864 grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
865 the clusters and their nodes are connected via  high speed local area networks. 
866 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
867
868 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
869 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
870 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
871  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumption represents the 
872 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
873
874
875 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
876 \begin{equation}
877   \label{eq:pdyn}
878     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
879 \end{equation}
880
881 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
882 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
883 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
884 Therefore, the dynamic power of one core is computed as the difference between the maximum 
885 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
886
887 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  20\% of dynamic power consumption of the core.
888
889 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
890
891 Four clusters from the two sites were selected in the experiments: one cluster from 
892 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
893 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
894 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
895 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
896 selected clusters and are presented in table  \ref{table:grid5000}.
897
898
899 \begin{figure}[!t]
900   \centering
901   \includegraphics[scale=1]{fig/grid5000}
902   \caption{The selected two sites of grid'5000}
903   \label{fig:grid5000}
904 \end{figure}
905
906 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
907 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
908 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
909
910
911
912
913 \begin{figure}[!t]
914   \centering
915   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
916   \caption{The power consumption by one core from Taurus cluster}
917   \label{fig:power_cons}
918 \end{figure}
919
920
921
922   
923 \begin{table}[!t]
924   \caption{CPUs characteristics of the selected clusters}
925   % title of Table
926   \centering
927   \begin{tabular}{|*{7}{c|}}
928     \hline
929     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
930     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
931                 &             & GHz   & GHz   & GHz   &                 &           \\
932     \hline
933     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
934                 & Xeon        &       &       &       &                 &            \\
935                 & E5-2630     &       &       &       &                 &            \\         
936     \hline
937     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
938                 & Xeon        &       &       &       &                 &            \\
939                 & X3440       &       &       &       &                 &            \\    
940     \hline
941     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
942                 & Xeon        &       &       &       &                 &            \\
943                 & L5420       &       &       &       &                 &            \\  
944     \hline
945     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
946                 & Xeon        &       &       &       &                 &            \\
947                 & E5-2650     &       &       &       &                 &            \\  
948     \hline
949   \end{tabular}
950   \label{table:grid5000}
951 \end{table} 
952
953
954
955 \subsection{The experimental results of the scaling algorithm}
956 \label{sec.res}
957 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
958 to the NAS parallel benchmarks are presented. 
959
960 As mentioned previously, the experiments 
961 were conducted over two sites of grid'5000,  Lyon and Nancy sites. 
962 Two scenarios were considered while selecting the clusters from these two sites :
963 \begin{itemize}
964 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
965  via a long distance network.
966 \item In the second scenario nodes from three clusters that are located in one site, Nancy site.  
967 \end{itemize}
968
969 The main reason 
970 behind using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
971 scaling factors selection algorithm. Indeed, in the first scenario the computations to communications ratio 
972 is very low due to the higher communication times which reduces the effect of DVFS operations.
973
974 The NAS parallel benchmarks are executed over 
975 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
976 are different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
977 Table \ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
978
979 \begin{table}[h]
980
981 \caption{The different clusters scenarios}
982 \centering
983 \begin{tabular}{|*{4}{c|}}
984 \hline
985 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
986                                       & Cluster & Site           & No. of  nodes     \\ 
987 \hline
988 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
989                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
990                                       & Griffon       & Nancy        & 6                      \\ 
991 \hline
992 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
993                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
994                                       & Griffon     &Nancy           & 12                     \\ 
995 \hline
996 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
997                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
998                                       & Griffon         & Nancy        & 6                      \\ 
999 \hline
1000 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
1001                                       & Graphene      & Nancy          & 12                     \\ \cline{2-4} 
1002                                       & Griffon          & Nancy       & 12                       \\ 
1003 \hline
1004 \end{tabular}
1005  \label{tab:sc}
1006 \end{table}
1007
1008 \begin{figure}
1009   \centering
1010   \includegraphics[scale=0.5]{fig/eng_con_scenarios.eps}
1011   \caption{The energy consumptions of NAS benchmarks over different scenarios }
1012   \label{fig:eng_sen}
1013 \end{figure}
1014
1015
1016
1017 \begin{figure}
1018   \centering
1019   \includegraphics[scale=0.5]{fig/time_scenarios.eps}
1020   \caption{The execution times of NAS benchmarks over different scenarios }
1021   \label{fig:time_sen}
1022 \end{figure}
1023
1024 The NAS parallel benchmarks are executed over these two platforms
1025  with different number of nodes, as in Table \ref{tab:sc}. 
1026 The overall energy consumption of all the benchmarks solving the class D instance and
1027 using the proposed frequency selection algorithm is measured 
1028 using the equation of the reduced energy consumption, equation 
1029 (\ref{eq:energy}). This model uses the measured dynamic and static 
1030 power values  showed in Table \ref{table:grid5000}. The execution
1031 time is measured for all the benchmarks over these different scenarios.  
1032
1033 The energy consumptions  and the execution times for all the benchmarks are 
1034 presented in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
1035
1036 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site scenario 
1037 for  16 and 32 nodes is lower than the energy consumed while using two sites. 
1038 The long distance communications between the two distributed sites increase the idle time, which leads to more static energy consumption. 
1039
1040 The execution times of these benchmarks 
1041 over one site with 16 and 32 nodes are also lower when  compared to those of the  two sites 
1042 scenario. Moreover, most of the benchmarks running over the one site scenario their execution times  are approximately divided by two  when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).  
1043
1044 However, the  execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly affected 
1045  in both scenarios. Even when the number of nodes is doubled. On the other hand, the communications of the rest of the benchmarks increases when using long distance communications between two sites or increasing the number of computing nodes.
1046
1047 \begin{figure}
1048   \centering
1049   \includegraphics[scale=0.5]{fig/eng_s.eps}
1050   \caption{The energy saving of NAS benchmarks over different scenarios }
1051   \label{fig:eng_s}
1052 \end{figure}
1053
1054
1055 \begin{figure}
1056   \centering
1057   \includegraphics[scale=0.5]{fig/per_d.eps}
1058   \caption{The performance degradation of NAS benchmarks over different scenarios }
1059   \label{fig:per_d}
1060 \end{figure}
1061
1062
1063 \begin{figure}
1064   \centering
1065   \includegraphics[scale=0.5]{fig/dist.eps}
1066   \caption{The tradeoff distance of NAS benchmarks over different scenarios }
1067   \label{fig:dist}
1068 \end{figure}
1069
1070 The energy saving percentage is computed as the ratio between the reduced 
1071 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
1072 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
1073 This figure shows that the energy saving percentages of one site scenario for
1074 16 and 32 nodes are bigger than those of the two sites scenario which is due
1075 to the higher  computations to communications ratio in the first scenario   
1076 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computations times are bigger than the communication times which 
1077 results in  a lower energy consumption. Indeed, the dynamic  consumed power
1078 is exponentially related to the CPU's frequency value. On the other side, the increase in the number of computing nodes can 
1079 increase the communication times and thus produces less energy saving depending on the 
1080 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
1081 energy saving percentage in one site scenario when executed over 16 nodes comparing to 32 nodes. While, LU and SP consume more energy with 16 nodes than 32 in one site  because their computations to communications ratio is not affected by the increase of the number of local communications. 
1082
1083
1084 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
1085 scenario, except for the   EP benchmark which has  no communications. Therefore, the energy saving percentage of this benchmark is 
1086 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
1087 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
1088 this cluster is replaced with Taurus cluster which is more powerful. 
1089 Therefore, the energy saving of EP benchmarks are bigger in the two sites scenario due 
1090 to the higher maximum difference between the computing powers of the nodes. 
1091
1092 In fact, high differences between the nodes' computing powers make the proposed frequencies selecting  
1093 algorithm  select smaller frequencies for the powerful nodes which 
1094 produces less energy consumption and thus more energy saving.
1095 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
1096
1097
1098 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
1099 The performance degradation percentage for the benchmarks running on two sites  with
1100 16 or 32  nodes is on average equal to 8\% or 4\% respectively. 
1101 For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes  without significantly degrading their performance because the communication times are higher with 32 nodes which results in smaller  computations to communications ratio.  On the other hand, the performance degradation percentage  for the benchmarks running  on one site  with
1102 16 or 32  nodes is on average equal to 3\% or 10\% respectively. In opposition to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing 
1103 nodes when the communications occur in high speed network does not decrease the computations to 
1104 communication ratio. 
1105
1106 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
1107 the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
1108 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
1109 The rest of the benchmarks showed different performance degradation percentages, which decrease
1110 when the communication times increase and vice versa.
1111
1112 Figure \ref{fig:dist} presents the  distance percentage between the energy saving  and the performance degradation for each benchmark  over both  scenarios. The tradeoff distance percentage can be 
1113 computed as in equation \ref{eq:max}. The one site scenario with 16 nodes gives the best energy and performance 
1114 tradeoff, on average it is equal to  26\%. The one site scenario using both 16 and 32 nodes had better energy and performance 
1115 tradeoff comparing to the two sites scenario  because the former has high speed local communications 
1116 which increase the computations to communications ratio  and the latter uses long distance communications which decrease this ratio. 
1117
1118
1119  Finally, the best energy and performance tradeoff depends on all of the following:
1120 1) the computations to communications ratio when there are  communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed  static and dynamic powers of the nodes.
1121
1122
1123
1124
1125 \subsection{The experimental results of multi-cores clusters}
1126 \label{sec.res-mc}
1127 The  clusters of grid'5000 have different number of cores embedded in their nodes
1128 as shown in Table \ref{table:grid5000}. The cores of each node can exchange 
1129 data via the shared memory \cite{rauber_book}. In 
1130 this section, the proposed scaling algorithm is evaluated over the grid'5000 grid while using multi-core nodes 
1131 selected according to the two  platform scenarios described in the section \ref{sec.res}.
1132 The two platform scenarios, the two sites and one site scenarios, use  32 
1133 cores from multi-cores nodes instead of 32 distinct nodes. For example if 
1134 the participating number of cores from a certain cluster is equal to 12, 
1135 in the multi-core scenario the selected nodes is equal to 3 nodes while using 
1136 4 cores from each node. The platforms with one  
1137 core per node and  multi-cores nodes are  shown in Table \ref{table:sen-mc}. 
1138 The energy consumptions and execution times of running the NAS parallel 
1139 benchmarks, class D, over these four different scenarios are presented 
1140 in the figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
1141
1142 The execution times for most of  the NAS  benchmarks are higher over the one site multi-cores per node scenario 
1143  than the execution time of those running over one site single core per node  scenario. Indeed,  
1144    the communication times  are higher in the one site multi-cores scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. 
1145    
1146  \textcolor{blue}{On the other hand,  the execution times for most of the NAS benchmarks  are lower over 
1147 the two sites  multi-cores scenario than those over the two sites one core scenario.   ???????
1148 }
1149
1150 The experiments showed that for most of the NAS benchmarks and between the four scenarios,  
1151 the one site one core scenario gives the best execution times because the communication times are the lowest. 
1152 Indeed, in this scenario each core has a dedicated network link and all the communications are local.  
1153 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
1154 one site one core scenario  than over the one site multi-cores scenario because 
1155 the first scenario had less execution time than the latter which results in less static energy being consumed.
1156
1157 The computations to communications ratios of the NAS benchmarks are higher over 
1158 the one site one core scenario  when compared to the ratios of the other scenarios. 
1159 More energy reduction was achieved when this ratio is increased because the proposed scaling algorithm selects smaller frequencies that decrease the dynamic power consumption. 
1160
1161   \textcolor{blue}{ Whereas, the energy consumption in the two sites one core scenario is higher than the energy consumption of the two sites multi-core scenario. This is according to the increase in the execution time of the two sites one core scenario. }
1162
1163
1164 These experiments also showed that the energy 
1165 consumption and the execution times of the EP and MG benchmarks do not change significantly over these four 
1166 scenarios  because there are no or small communications,  
1167 which could increase or decrease the static power consumptions. Contrary to EP and MG, the  energy consumptions 
1168 and the execution times of the rest of the  benchmarks  vary according to the  communication times that are different from one scenario to the other.
1169
1170
1171 The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that  the energy saving percentages   over the two sites multi-cores scenario 
1172 and over the two sites one core scenario are on average  equal to 22\% and 18\%
1173 respectively. The energy saving percentages   are higher in the former scenario because  its computations to communications  ratio is higher than the ratio of the latter scenario  as mentioned previously.
1174
1175 In contrast, in the one site one 
1176 core and one site multi-cores scenarios the energy saving percentages 
1177 are approximately equivalent, on average they are up to 25\%. In both scenarios there 
1178 are a small difference  in the computations to communications ratios, which leads 
1179 the proposed scaling algorithm to select similar frequencies for both scenarios.  
1180
1181 The performance degradation percentages of the NAS benchmarks are presented in
1182 figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks are higher over the two sites 
1183 multi-cores scenario than over the  two sites  one core scenario, equal on average to 7\% and 4\% respectively. 
1184 Moreover, using the two sites multi-cores scenario increased 
1185 the computations to communications ratio, which may increase 
1186 the overall execution time  when the proposed scaling algorithm is applied and the frequencies scaled down.  
1187
1188
1189 When the benchmarks are executed  over the one 
1190 site one core scenario, their performance degradation percentages are equal  on average
1191 to 10\% and are higher than those executed over the one site multi-cores scenario, 
1192 which on average is equal to 7\%. 
1193
1194 \textcolor{blue}{
1195 The performance degradation percentages over one site multi-cores is lower because  the computations to communications ratio is decreased. Therefore, selecting small 
1196 frequencies by the scaling algorithm are proportional to this ratio, and thus the execution time do not increase significantly.}
1197
1198
1199 The tradeoff distance percentages of the NAS 
1200 benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
1201 These  tradeoff distance percentages are used to verify which scenario is the best in terms of energy reduction and performance. The figure shows that using muti-cores in both of the one site and two sites scenarios gives bigger  tradeoff distance percentages, on overage equal to 17.6\% and 15.3\% respectively, than using one core per node in both of one site and two sites scenarios,  on average  equal to 14.7\% and 13.3\% respectively. 
1202
1203 \begin{table}[]
1204 \centering
1205 \caption{The multicores scenarios}
1206
1207 \begin{tabular}{|*{4}{c|}}
1208 \hline
1209 Scenario name                          & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of  nodes\\ in each cluster\end{tabular} & 
1210                                        \begin{tabular}[c]{@{}c@{}}No. of  cores\\ for each node\end{tabular}  \\ \hline
1211 \multirow{3}{*}{Two sites/ one core}   & Taurus       & 10              & 1                   \\ \cline{2-4}
1212                                        & Graphene     & 10              & 1                   \\ \cline{2-4}
1213                                        & Griffon      & 12              & 1                   \\ \hline
1214 \multirow{3}{*}{Two sites/ multicores} & Taurus       & 3               & 3 or 4              \\ \cline{2-4}
1215                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1216                                        & Griffon      & 3               & 4                   \\ \hline
1217 \multirow{3}{*}{One site/ one core}    & Graphite     & 4               & 1                   \\  \cline{2-4}
1218                                        & Graphene     & 12              & 1                   \\  \cline{2-4}
1219                                        & Griffon      & 12              & 1                   \\ \hline
1220 \multirow{3}{*}{One site/ multicores}  & Graphite     & 3               & 3 or 4              \\  \cline{2-4}
1221                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1222                                        & Griffon      & 3               & 4                   \\ \hline
1223 \end{tabular}
1224 \label{table:sen-mc}
1225 \end{table}
1226
1227 \begin{figure}
1228   \centering
1229   \includegraphics[scale=0.5]{fig/eng_con.eps}
1230   \caption{Comparing the  energy consumptions of running NAS benchmarks over one core and multicores scenarios }
1231   \label{fig:eng-cons-mc}
1232 \end{figure}
1233
1234
1235   \begin{figure}
1236   \centering
1237   \includegraphics[scale=0.5]{fig/time.eps}
1238   \caption{Comparing the  execution times of running NAS benchmarks over one core and multicores scenarios }
1239   \label{fig:time-mc}
1240 \end{figure}
1241
1242  \begin{figure}
1243   \centering
1244   \includegraphics[scale=0.5]{fig/eng_s_mc.eps}
1245   \caption{The energy saving of running NAS benchmarks over one core and multicores scenarios }
1246   \label{fig:eng-s-mc}
1247 \end{figure}
1248
1249 \begin{figure}
1250   \centering
1251   \includegraphics[scale=0.5]{fig/per_d_mc.eps}
1252   \caption{The performance degradation of running NAS benchmarks over one core and multicores scenarios }
1253   \label{fig:per-d-mc}
1254 \end{figure}
1255
1256 \begin{figure}
1257   \centering
1258   \includegraphics[scale=0.5]{fig/dist_mc.eps}
1259   \caption{The tradeoff distance of running NAS benchmarks over one core and multicores scenarios }
1260   \label{fig:dist-mc}
1261 \end{figure}
1262
1263 \subsection{Experiments with different static and dynamic powers consumption scenarios}
1264 \label{sec.pow_sen}
1265
1266 In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too. 
1267
1268 The aim of  this section is to evaluate the scaling algorithm while assuming different values of static powers. 
1269 In addition to the previously used  percentage of static power, two new static power ratios,  10\% and 30\% of the measured dynamic power of the core, are used in this section.
1270 The experiments have been executed with these two new static power scenarios and over the one site one core per node scenario.
1271 In these experiments, the class D of the NAS parallel benchmarks are executed over Nancy's site. 16 computing nodes from the three sites, Graphite, Graphene and Griffon, where used in this experiment.  
1272
1273  \begin{figure}
1274   \centering
1275   \includegraphics[scale=0.5]{fig/eng_pow.eps}
1276   \caption{The energy saving percentages for NAS benchmarks of the three power scenario}
1277   \label{fig:eng-pow}
1278 \end{figure}
1279
1280 \begin{figure}
1281   \centering
1282   \includegraphics[scale=0.5]{fig/per_pow.eps}
1283   \caption{The performance degradation percentages for NAS benchmarks of the three power scenario}
1284   \label{fig:per-pow}
1285 \end{figure}
1286
1287
1288 \begin{figure}
1289   \centering
1290   \includegraphics[scale=0.5]{fig/dist_pow.eps}
1291   \caption{The tradeoff distance for NAS benchmarks of the three power scenario}
1292   \label{fig:dist-pow}
1293 \end{figure}
1294
1295 \begin{figure}
1296   \centering
1297   \includegraphics[scale=0.47]{fig/three_scenarios.pdf}
1298   \caption{Comparing the selected frequency scaling factors of MG benchmark for three static power scenarios}
1299   \label{fig:fre-pow}
1300 \end{figure}
1301
1302
1303 The energy saving percentages of the NAS benchmarks with the three static power scenarios are presented 
1304 in figure \ref{fig:eng_sen}. This figure shows that the  10\% of static power scenario 
1305 gives the biggest energy saving percentage in comparison to the 20\% and 30\% static power 
1306 scenarios. The small value of static power consumption makes the proposed 
1307 scaling algorithm  select smaller frequencies for the CPUs. 
1308 These smaller frequencies reduce the dynamic energy consumption more than increasing the consumed static energy which gives             less overall energy consumption. 
1309 The energy saving percentages of the 30\% static power scenario is the smallest between the other scenarios, because the scaling algorithm selects bigger frequencies for the CPUs which increases the energy consumption. Figure \ref{fig:fre-pow} demonstrates that the proposed scaling algorithm selects   the best frequency scaling factors   according to the static power consumption ratio being used.
1310
1311 \textcolor{blue}{ 
1312 The performance degradation percentages are presented in the figure \ref{fig:per-pow},
1313 the 30\% of static power scenario had less performance degradation percentage. This  because
1314 bigger frequencies are selected for the CPUs by the scaling algorithm. While, 
1315 the inverse happens in the 20\% and 30\% scenarios, because the scaling algorithm selects  bigger 
1316 frequencies. 
1317 The tradeoff distance percentage for the NAS benchmarks with these three static power scenarios 
1318 are presented in the figure \ref{fig:dist}. It shows that the tradeoff
1319 distance percentage is the best when the  10\% of static power scenario is used, and this percentage 
1320 is decreased for the other two scenarios because of  different frequencies have being selected by the scaling algorithm.
1321 In EP benchmark, the results of energy saving, performance degradation and tradeoff 
1322 distance are showed small differences when the these static power scenarios are used.
1323 In this benchmark there are no communications which leads  the proposed scaling algorithm to select similar frequencies even if the static power values are different. While, the 
1324 inverse has been shown  for the rest of the benchmarks, which have  different communication times.
1325 This makes the scaling algorithm proportionally selects big or small frequencies for each benchmark,
1326 because the communication times  proportionally increase or decrease the static energy consumption. }
1327
1328  
1329 \subsection{The comparison of the proposed frequencies selecting algorithm }
1330 \label{sec.compare_EDP}
1331 \textcolor{blue}{
1332 The tradeoff between the energy consumption and the performance of the parallel 
1333 applications had significant importance in the domain of the research. 
1334 Many researchers, \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs},
1335 have optimized the tradeoff between the energy and the performance using the well known  energy and delay product, $EDP=energy \times delay$. 
1336 This model is also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS},
1337 the  objective is to select the frequencies that minimized EDP product for the multi-cores 
1338 architecture when DVFS is used. Moreover, their algorithm is applied online, which synchronously optimized the energy consumption 
1339 and the execution time. Both energy consumption and execution time of a processor are predicted by the their algorithm.
1340 In this section the proposed frequencies selection algorithm, called Maxdist is compared with Spiliopoulos et al. algorithm, called EDP.
1341 To make both of the algorithms follow the same direction and  fairly  comparing them, the same energy model,  equation \ref{eq:energy} and
1342 the execution time model, equation \ref{eq:perf}, are used in the prediction process to select the best vector of the frequencies. 
1343 In contrast, the proposed algorithm starts the search space from the lower bound computed as in equation the  \ref{eq:Fint}. Also, the algorithm
1344 stops  the search process when it is reached to the lower bound as mentioned before. In the same way, the EDP algorithm is developed to start from the 
1345 same upper bound used in Maxdist algorithm, and it stops the search process when  a minimum available frequencies is reached. 
1346 Finally, the resulting EDP algorithm is an exhaustive search algorithm that test all possible frequencies, starting from the initial frequencies, 
1347 and selecting those minimized the EDP product.
1348 Both algorithms were applied to NAS benchmarks, class D, over 16 nodes selected from grid'5000 clusters.
1349 The participating computing nodes are distributed between two sites and one site to have two different scenarios that used in the section \ref{sec.res}. 
1350 The experimental results: the energy saving, performance degradation and tradeoff distance percentages are 
1351 presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively. 
1352 \begin{figure}
1353   \centering
1354   \includegraphics[scale=0.5]{fig/edp_eng}
1355   \caption{Comparing of the energy saving for the proposed method with EDP method}
1356   \label{fig:edp-eng}
1357 \end{figure}
1358 \begin{figure}
1359   \centering
1360   \includegraphics[scale=0.5]{fig/edp_per}
1361   \caption{Comparing of the performance degradation for the proposed method with EDP method}
1362   \label{fig:edp-perf}
1363 \end{figure}
1364 \begin{figure}
1365   \centering
1366   \includegraphics[scale=0.5]{fig/edp_dist}
1367   \caption{Comparing of the tradeoff distance for the proposed method with EDP method}
1368   \label{fig:edp-dist}
1369 \end{figure}
1370 As shown form these figures, the proposed frequencies selection algorithm, Maxdist, outperform the EDP algorithm in term of energy and performance for all of the benchmarks executed over the two scenarios. 
1371 Generally, the proposed algorithm gives better results for all benchmarks because it is
1372 optimized the distance between the energy saving and the performance degradation in the same time. 
1373 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
1374 Whereas, the EDP algorithm gives some times negative tradeoff values for some benchmarks in the two sites scenarios.
1375 These negative tradeoff values mean that the performance degradation percentage is higher than energy saving percentage.
1376 The higher positive value of the tradeoff distance percentage mean that the  energy saving percentage is much higher than the performance degradation percentage. 
1377 The time complexity of both Maxdist and EDP algorithms are $O(N \cdot M \cdot F)$ and 
1378 $O(N \cdot M \cdot F^2)$ respectively. Where $N$ is the number of the clusters, $M$ is the number of nodes and $F$ is the 
1379 maximum number of available frequencies. The proposed algorithm, Maxdist, has selected the best frequencies in a small execution time, 
1380 on average is equal to  0.01 $ms$, when it is executed over 32 nodes distributed between Nancy and Lyon sites.
1381 While the EDP algorithm was slower than Maxdist algorithm by ten times over the same number of nodes and same distribution, its execution time on average 
1382 is equal to 0.1 $ms$. 
1383 }
1384
1385
1386 \section{Conclusion}
1387 \label{sec.concl}
1388 \textcolor{blue}{
1389 This paper has been  presented a new online frequencies selection algorithm.
1390 It works based on objective function that maximized the tradeoff distance 
1391 between the predicted energy consumption and the predicted execution time of the distributed 
1392 iterative applications running over heterogeneous grid. The algorithm selects the best vector of the 
1393 frequencies which maximized the objective function has been used. A new energy model 
1394 used by the proposed algorithm for measuring and predicting the energy consumption 
1395 of the distributed iterative message passing application running over grid architecture.
1396 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
1397 NAS parallel benchmarks  class D instance  and executed over grid'5000 testbed platform. 
1398 The experimental results showed that the algorithm saves the energy consumptions on average 
1399 for all NAS benchmarks up to 30\%  while gives only 3\% percentage on average for the performance 
1400 degradation for the same instance. The algorithm also selecting different frequencies according to the 
1401 computations and communication times ratio, and according to the values of the static and measured dynamic power of the CPUs. The computations to communications ratio was varied between different scenarios have been used, concerning to the distribution of the computing nodes between different clusters' sites and using one core or multi-cores per node.
1402 Finally, the proposed algorithm was compared to other algorithm which it
1403 used the will known energy and delay product as an objective function. The comparison results showed 
1404 that the proposed algorithm outperform the other one in term of energy-time tradeoff.
1405 In the near future, we would like to develop a similar method that is adapted to
1406 asynchronous iterative applications where each task does not
1407 wait for other tasks to finish their works. The development of
1408 such a method might require a new energy model because the
1409 number of iterations is not known in advance and depends on
1410 the global convergence of the iterative system.
1411 }
1412
1413
1414 \section*{Acknowledgment}
1415
1416 This work  has been  partially supported by  the Labex ACTION  project (contract
1417 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the supercomputer
1418 facilities  of the  Mésocentre de  calcul de  Franche-Comté. As  a  PhD student,
1419 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
1420 supporting his work.$•$
1421
1422
1423
1424 %% The Appendices part is started with the command \appendix;
1425 %% appendix sections are then done as normal sections
1426 %% \appendix
1427
1428 %% \section{}
1429 %% \label{}
1430
1431 %% References
1432 %%
1433 %% Following citation commands can be used in the body text:
1434 %% Usage of \cite is as follows:
1435 %%   \cite{key}         ==>>  [#]
1436 %%   \cite[chap. 2]{key} ==>> [#, chap. 2]
1437 %%
1438
1439 %% References with BibTeX database:
1440
1441 \bibliographystyle{elsarticle-num}
1442 \bibliography{my_reference}
1443
1444 %% Authors are advised to use a BibTeX database file for their reference list.
1445 %% The provided style file elsarticle-num.bst formats references in the required Procedia style
1446
1447 %% For references without a BibTeX database:
1448
1449 % \begin{thebibliography}{00}
1450
1451 %% \bibitem must have the following form:
1452 %%   \bibitem{key}...
1453 %%
1454
1455 % \bibitem{}
1456
1457 % \end{thebibliography}
1458
1459 \end{document}
1460
1461 %%
1462 %% End of file `ecrc-template.tex'.