]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
adding power senarios section
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \usepackage{multirow}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
28
29 %% used to put some subscripts lower, and make them more legible
30 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
31
32 \newcommand{\CL}{\Xsub{C}{L}}
33 \newcommand{\Dist}{\mathit{Dist}}
34 \newcommand{\EdNew}{\Xsub{E}{dNew}}
35 \newcommand{\Eind}{\Xsub{E}{ind}}
36 \newcommand{\Enorm}{\Xsub{E}{Norm}}
37 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
38 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
39 \newcommand{\Es}{\Xsub{E}{S}}
40 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
41 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
42 \newcommand{\Fnew}{\Xsub{F}{new}}
43 \newcommand{\Ileak}{\Xsub{I}{leak}}
44 \newcommand{\Kdesign}{\Xsub{K}{design}}
45 \newcommand{\MaxDist}{\mathit{Max}\Dist}
46 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
47 \newcommand{\Ntrans}{\Xsub{N}{trans}}
48 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
49 \newcommand{\PdNew}{\Xsub{P}{dNew}}
50 \newcommand{\PdOld}{\Xsub{P}{dOld}}
51 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
52 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
53 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
54 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
55 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
56 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
57 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
58 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
59 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
60 \newcommand{\Tnew}{\Xsub{T}{New}}
61 \newcommand{\Told}{\Xsub{T}{Old}}
62
63 \begin{document}
64
65 \title{Energy Consumption Reduction with DVFS for \\
66   Message Passing Iterative Applications on \\
67   Heterogeneous Architectures}
68
69 \author{%
70   \IEEEauthorblockN{%
71     Jean-Claude Charr,
72     Raphaël Couturier,
73     Ahmed Fanfakh and
74     Arnaud Giersch
75   }
76   \IEEEauthorblockA{%
77     FEMTO-ST Institute, University of Franche-Comté\\
78     IUT de Belfort-Montbéliard,
79     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
80     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
81     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
82     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
83    }
84   }
85
86 \maketitle
87
88 \begin{abstract}
89   
90
91 \end{abstract}
92
93 \section{Introduction}
94 \label{sec.intro}
95
96
97
98 \section{Related works}
99 \label{sec.relwork}
100
101
102 \section{The performance and energy consumption measurements on heterogeneous architecture}
103 \label{sec.exe}
104
105 \subsection{The execution time of message passing distributed iterative
106   applications on a heterogeneous platform}
107
108 In this paper, we are interested in reducing the energy consumption of message
109 passing distributed iterative synchronous applications running over
110 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
111 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
112 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
113
114 \begin{figure}[!t]
115   \centering
116   \includegraphics[scale=0.6]{fig/commtasks}
117   \caption{Parallel tasks on a heterogeneous platform}
118   \label{fig:heter}
119 \end{figure}
120
121 The overall execution time of a distributed iterative synchronous application 
122 over a heterogeneous grid consists of the sum of the computation time and 
123 the communication time for every iteration on a node. However, due to the
124 heterogeneous computation power of the computing clusters, slack times may occur
125 when fast nodes have to wait, during synchronous communications, for the slower
126 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
127 overall execution time of the program is the execution time of the slowest task 
128 which has the highest computation time and no slack time.
129
130 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
131 modern processors, that reduces the energy consumption of a CPU by scaling
132 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
133 and consequently its computing power, the execution time of a program running
134 over that scaled down processor may increase, especially if the program is
135 compute bound.  The frequency reduction process can be  expressed by the scaling
136 factor S which is the ratio between  the maximum and the new frequency of a CPU
137 as in (\ref{eq:s}).
138 \begin{equation}
139   \label{eq:s}
140   S = \frac{\Fmax}{\Fnew}
141 \end{equation}
142 The execution time of a compute bound sequential program is linearly
143 proportional to the frequency scaling factor $S$.  On the other hand, message
144 passing distributed applications consist of two parts: computation and
145 communication.  The execution time of the computation part is linearly
146 proportional to the frequency scaling factor $S$ but the communication time is
147 not affected by the scaling factor because the processors involved remain idle
148 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
149 communication time for a task is the summation of periods of time that begin
150 with an MPI call for sending or receiving a message until the message is
151 synchronously sent or received.
152
153 Since in a heterogeneous grid each cluster has different characteristics,
154 especially different frequency gears, when applying DVFS operations on the nodes 
155 of these clusters, they may get different scaling factors represented by a scaling vector:
156 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
157 be able to predict the execution time of message passing synchronous iterative
158 applications running over a heterogeneous grid, for different vectors of
159 scaling factors, the communication time and the computation time for all the
160 tasks must be measured during the first iteration before applying any DVFS
161 operation. Then the execution time for one iteration of the application with any
162 vector of scaling factors can be predicted using (\ref{eq:perf}).
163 \begin{equation}
164   \label{eq:perf}
165   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
166   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
167 \end{equation}
168
169 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
170 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
171 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
172 first  iteration. The model computes the maximum computation time with scaling factor 
173 from each node added to the communication time of the slowest node in the slowest cluster $h$.
174 It means only the communication time without any slack time is taken into account.  
175 Therefore, the execution time of the iterative application is equal to
176 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
177 number of iterations of that application.
178
179 This prediction model is developed from the model to predict the execution time
180 of message passing distributed applications for homogeneous and heterogeneous clusters
181 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
182 used in the method to optimize both the energy consumption and the performance
183 of iterative methods, which is presented in the following sections.
184
185
186 \subsection{Energy model for heterogeneous grid platform}
187
188 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
189   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
190   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
191 a processor into two power metrics: the static and the dynamic power.  While the
192 first one is consumed as long as the computing unit is turned on, the latter is
193 only consumed during computation times.  The dynamic power $\Pd$ is related to
194 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
195 and operational frequency $F$, as shown in (\ref{eq:pd}).
196 \begin{equation}
197   \label{eq:pd}
198   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
199 \end{equation}
200 The static power $\Ps$ captures the leakage power as follows:
201 \begin{equation}
202   \label{eq:ps}
203    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
204 \end{equation}
205 where V is the supply voltage, $\Ntrans$ is the number of transistors,
206 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
207 technology dependent parameter.  The energy consumed by an individual processor
208 to execute a given program can be computed as:
209 \begin{equation}
210   \label{eq:eind}
211   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
212 \end{equation}
213 where $T$ is the execution time of the program, $\Tcp$ is the computation
214 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
215 communication and no slack time.
216
217 The main objective of DVFS operation is to reduce the overall energy
218 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
219 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
220 F$ with some constant $\beta$.~This equation is used to study the change of the
221 dynamic voltage with respect to various frequency values
222 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
223 frequency can be expressed by the scaling factor $S$ which is the ratio between
224 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
225 power schemes supplied by the operating system's kernel to lower a core's
226 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
227 follows:
228 \begin{equation}
229   \label{eq:fnew}
230    \Fnew = S^{-1} \cdot \Fmax
231 \end{equation}
232 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
233 equation for dynamic power consumption:
234 \begin{multline}
235   \label{eq:pdnew}
236    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
237    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
238 \end{multline}
239 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
240 new frequency and the maximum frequency respectively.
241
242 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
243 $S^{-3}$ when reducing the frequency by a factor of
244 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
245 proportional to the frequency of a CPU, the computation time is increased
246 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
247 by the new time of computation and is given by the following equation:
248 \begin{equation}
249   \label{eq:Edyn}
250    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
251 \end{equation}
252 The static power is related to the power leakage of the CPU and is consumed
253 during computation and even when idle. As
254 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
255 the static power of a processor is considered as constant during idle and
256 computation periods, and for all its available frequencies.  The static energy
257 is the static power multiplied by the execution time of the program.  According
258 to the execution time model in (\ref{eq:perf}), the execution time of the
259 program is the sum of the computation and the communication times. The
260 computation time is linearly related to the frequency scaling factor, while this
261 scaling factor does not affect the communication time.  The static energy of a
262 processor after scaling its frequency is computed as follows:
263 \begin{equation}
264   \label{eq:Estatic}
265   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
266 \end{equation}
267
268 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
269 different dynamic and static powers from the nodes of the other clusters, 
270 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
271 message passing iterative application is load balanced, the computation time of each CPU $j$ 
272 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
273 computed in order to decrease the overall energy consumption of the application
274 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
275 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
276 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
277 communication times. While the dynamic energy is computed according to the
278 frequency scaling factor and the dynamic power of each node as in
279 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
280 of one iteration multiplied by the static power of each processor.  The overall
281 energy consumption of a message passing distributed application executed over a
282 heterogeneous grid platform during one iteration is the summation of all dynamic and
283 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
284 \begin{multline}
285   \label{eq:energy}
286  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
287  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
288   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
289   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
290 \end{multline}
291
292 Reducing the frequencies of the processors according to the vector of scaling
293 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
294 and thus, increase the static energy because the execution time is
295 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
296 for the iterative application can be measured by measuring the energy
297 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
298 of iterations of that application.
299
300 \section{Optimization of both energy consumption and performance}
301 \label{sec.compet}
302
303 Using the lowest frequency for each processor does not necessarily give the most
304 energy efficient execution of an application. Indeed, even though the dynamic
305 power is reduced while scaling down the frequency of a processor, its
306 computation power is proportionally decreased. Hence, the execution time might
307 be drastically increased and during that time, dynamic and static powers are
308 being consumed.  Therefore, it might cancel any gains achieved by scaling down
309 the frequency of all nodes to the minimum and the overall energy consumption of
310 the application might not be the optimal one.  It is not trivial to select the
311 appropriate frequency scaling factor for each processor while considering the
312 characteristics of each processor (computation power, range of frequencies,
313 dynamic and static powers) and the task executed (computation/communication
314 ratio). The aim being to reduce the overall energy consumption and to avoid
315 increasing significantly the execution time.  In our previous
316 work~\cite{Our_first_paper,pdsec2015}, we proposed a method that selects the optimal
317 frequency scaling factor for a homogeneous and heterogeneous clusters executing a message passing
318 iterative synchronous application while giving the best trade-off between the
319 energy consumption and the performance for such applications.  In this work we
320 are interested in heterogeneous grid as described above.  Due to the
321 heterogeneity of the processors, a vector of scaling factors should be selected
322 and it must give the best trade-off between energy consumption and performance.
323
324 The relation between the energy consumption and the execution time for an
325 application is complex and nonlinear, Thus, unlike the relation between the
326 execution time and the scaling factor, the relation between the energy and the
327 frequency scaling factors is nonlinear, for more details refer
328 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
329 are not measured using the same metric.  To solve this problem, the execution
330 time is normalized by computing the ratio between the new execution time (after
331 scaling down the frequencies of some processors) and the initial one (with
332 maximum frequency for all nodes) as follows:
333 \begin{equation}
334   \label{eq:pnorm}
335   \Pnorm = \frac{\Tnew}{\Told}                 
336 \end{equation}
337
338
339 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
340 \begin{equation}
341   \label{eq:told}
342    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
343 \end{equation}
344 In the same way, the energy is normalized by computing the ratio between the
345 consumed energy while scaling down the frequency and the consumed energy with
346 maximum frequency for all  nodes:
347 \begin{equation}
348   \label{eq:enorm}
349   \Enorm = \frac{\Ereduced}{\Eoriginal} 
350 \end{equation}
351
352 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
353 computed as in (\ref{eq:eorginal}).
354
355
356 \begin{equation}
357   \label{eq:eorginal}
358     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
359      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
360 \end{equation}
361
362 While the main goal is to optimize the energy and execution time at the same
363 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
364 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
365 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
366 and the execution time simultaneously.  But the main objective is to produce
367 maximum energy reduction with minimum execution time reduction.
368
369 This problem can be solved by making the optimization process for energy and
370 execution time follow the same evolution according to the vector of scaling factors
371 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
372 normalized execution time is inverted which gives the normalized performance
373 equation, as follows:
374 \begin{equation}
375   \label{eq:pnorm_inv}
376   \Pnorm = \frac{\Told}{\Tnew}          
377 \end{equation}
378
379 \begin{figure}[!t]
380   \centering
381   \subfloat[Homogeneous cluster]{%
382     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
383
384   \subfloat[Heterogeneous grid]{%
385     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
386   \label{fig:rel}
387   \caption{The energy and performance relation}
388 \end{figure}
389
390 Then, the objective function can be modeled in order to find the maximum
391 distance between the energy curve (\ref{eq:enorm}) and the performance curve
392 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
393 represents the minimum energy consumption with minimum execution time (maximum
394 performance) at the same time, see Figure~\ref{fig:r1} or
395 Figure~\ref{fig:r2}. Then the objective function has the following form:
396 \begin{equation}
397   \label{eq:max}
398   \MaxDist =
399 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
400       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
401        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
402 \end{equation}
403 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
404 $F$ is the number of available frequencies for each node.  Then, the optimal set 
405 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
406 The objective function can work with any energy model or any power 
407 values for each node (static and dynamic powers). However, the most important 
408 energy reduction gain can be achieved when the energy curve has a convex form as shown 
409 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
410
411 \section{The scaling factors selection algorithm for  grids }
412 \label{sec.optim}
413
414 \begin{algorithm}
415   \begin{algorithmic}[1]
416     % \footnotesize
417     \Require ~
418     \begin{description}
419     \item [{$N$}] number of clusters in the grid.
420     \item [{$M$}] number of nodes in each cluster.
421     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
422     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
423     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
424     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
425     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
426     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
427     \end{description}
428     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
429
430     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
431     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
432     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
433     \If{(not the first frequency)}
434           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
435     \EndIf
436     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
437     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
438     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
439     \State $\Dist \gets 0 $
440     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
441         \If{(not the last freq. \textbf{and} not the slowest node)}
442         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
443         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
444         \EndIf
445        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
446        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
447        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
448        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
449       \If{$(\Pnorm - \Enorm > \Dist)$}
450         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
451         \State $\Dist \gets \Pnorm - \Enorm$
452       \EndIf
453     \EndWhile
454     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
455   \end{algorithmic}
456   \caption{Scaling factors selection algorithm}
457   \label{HSA}
458 \end{algorithm}
459
460 \begin{algorithm}
461   \begin{algorithmic}[1]
462     % \footnotesize
463     \For {$k=1$ to \textit{some iterations}}
464       \State Computations section.
465       \State Communications section.
466       \If {$(k=1)$}
467         \State Gather all times of computation and\newline\hspace*{3em}%
468                communication from each node.
469         \State Call Algorithm \ref{HSA}.
470         \State Compute the new frequencies from the\newline\hspace*{3em}%
471                returned optimal scaling factors.
472         \State Set the new frequencies to nodes.
473       \EndIf
474     \EndFor
475   \end{algorithmic}
476   \caption{DVFS algorithm}
477   \label{dvfs}
478 \end{algorithm}
479
480
481
482 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
483 scaling factors  that gives the best trade-off between minimizing the
484 energy consumption and maximizing the performance of a message passing
485 synchronous iterative application executed on a  grid. It works
486 online during the execution time of the iterative message passing program.  It
487 uses information gathered during the first iteration such as the computation
488 time and the communication time in one iteration for each node. The algorithm is
489 executed after the first iteration and returns a vector of optimal frequency
490 scaling factors that satisfies the objective function (\ref{eq:max}). The
491 program applies DVFS operations to change the frequencies of the CPUs according
492 to the computed scaling factors.  This algorithm is called just once during the
493 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
494 scaling algorithm is called in the iterative MPI program.
495
496 \begin{figure}[!t]
497   \centering
498   \includegraphics[scale=0.45]{fig/init_freq}
499   \caption{Selecting the initial frequencies}
500   \label{fig:st_freq}
501 \end{figure}
502
503 Nodes from distinct clusters in a grid have different computing powers, thus
504 while executing message passing iterative synchronous applications, fast nodes
505 have to wait for the slower ones to finish their computations before being able
506 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
507 periods are called idle or slack times.  The algorithm takes into account this
508 problem and tries to reduce these slack times when selecting the vector of the frequency
509 scaling factors. At first, it selects initial frequency scaling factors
510 that increase the execution times of fast nodes and minimize the differences
511 between the computation times of fast and slow nodes. The value of the initial
512 frequency scaling factor for each node is inversely proportional to its
513 computation time that was gathered from the first iteration. These initial
514 frequency scaling factors are computed as a ratio between the computation time
515 of the slowest node and the computation time of the node $i$ as follows:
516 \begin{equation}
517   \label{eq:Scp}
518   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
519 \end{equation}
520 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
521 algorithm computes the initial frequencies for all nodes as a ratio between the
522 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
523 follows:
524 \begin{equation}
525   \label{eq:Fint}
526   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
527 \end{equation}
528 If the computed initial frequency for a node is not available in the gears of
529 that node, it is replaced by the nearest available frequency.  In
530 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
531 ascending order and the frequencies of the faster nodes are scaled down
532 according to the computed initial frequency scaling factors.  The resulting new
533 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
534 frequencies can be considered as a higher bound for the search space of the
535 optimal vector of frequencies because selecting higher frequencies
536 than the higher bound will not improve the performance of the application and it
537 will increase its overall energy consumption.  Therefore the algorithm that
538 selects the frequency scaling factors starts the search method from these
539 initial frequencies and takes a downward search direction toward lower
540 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
541 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
542 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
543
544 Therefore, the algorithm iterates on all remaining frequencies, from the higher
545 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
546 energy consumption and performance and selects the optimal vector of the frequency scaling
547 factors. At each iteration the algorithm determines the slowest node
548 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
549 while it lowers the frequency of all other nodes by one gear.  The new overall
550 energy consumption and execution time are computed according to the new scaling
551 factors.  The optimal set of frequency scaling factors is the set that gives the
552 highest distance according to the objective function (\ref{eq:max}).
553
554 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
555 consumed energy for an application running on a homogeneous cluster and a
556  grid platform respectively while increasing the scaling factors. It can
557 be noticed that in a homogeneous cluster the search for the optimal scaling
558 factor should start from the maximum frequency because the performance and the
559 consumed energy decrease from the beginning of the plot. On the other hand, in
560 the  grid platform the performance is maintained at the beginning of the
561 plot even if the frequencies of the faster nodes decrease until the computing
562 power of scaled down nodes are lower than the slowest node. In other words,
563 until they reach the higher bound. It can also be noticed that the higher the
564 difference between the faster nodes and the slower nodes is, the bigger the
565 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
566
567
568 \section{Experimental results}
569 \label{sec.expe}
570 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid}, 
571 in this paper real experiments were conducted over the grid'5000 platform. 
572
573 \subsection{Grid'5000 architature and power consumption}
574 \label{sec.grid5000}
575 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
576 which is the French National Telecommunication Network for Technology.
577 Each site of the grid is composed of few heterogeneous 
578 computing clusters and each cluster contains many homogeneous nodes. In total,
579 grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
580 the clusters and their nodes are connected via  high speed local area networks. 
581 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
582
583 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
584 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
585 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
586  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumption represents the 
587 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
588
589
590 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
591 \begin{equation}
592   \label{eq:pdyn}
593     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
594 \end{equation}
595
596 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
597 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
598 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
599 Therefore, the dynamic power of one core is computed as the difference between the maximum 
600 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
601
602 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  20\% of dynamic power consumption of the core.
603
604 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
605
606 Four clusters from the two sites were selected in the experiments: one cluster from 
607 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
608 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
609 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
610 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
611 selected clusters and are presented in table  \ref{table:grid5000}.
612
613
614
615
616 \begin{figure}[!t]
617   \centering
618   \includegraphics[scale=1]{fig/grid5000}
619   \caption{The selected two sites of grid'5000}
620   \label{fig:grid5000}
621 \end{figure}
622
623
624 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
625 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
626 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
627
628
629
630
631 \begin{figure}[!t]
632   \centering
633   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
634   \caption{The power consumption by one core from Taurus cluster}
635   \label{fig:power_cons}
636 \end{figure}
637
638
639
640   
641 \begin{table}[!t]
642   \caption{CPUs characteristics of the selected clusters}
643   % title of Table
644   \centering
645   \begin{tabular}{|*{7}{c|}}
646     \hline
647     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
648     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
649                 &             & GHz   & GHz   & GHz   &                 &           \\
650     \hline
651     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
652                 & Xeon        &       &       &       &                 &            \\
653                 & E5-2630     &       &       &       &                 &            \\         
654     \hline
655     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
656                 & Xeon        &       &       &       &                 &            \\
657                 & X3440       &       &       &       &                 &            \\    
658     \hline
659     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
660                 & Xeon        &       &       &       &                 &            \\
661                 & L5420       &       &       &       &                 &            \\  
662     \hline
663     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
664                 & Xeon        &       &       &       &                 &            \\
665                 & E5-2650     &       &       &       &                 &            \\  
666     \hline
667   \end{tabular}
668   \label{table:grid5000}
669 \end{table} 
670
671
672
673 \subsection{The experimental results of the scaling algorithm}
674 \label{sec.res}
675 In this section, the results of the the application of the scaling factors selection algorithm \ref{HSA} 
676 to the NAS parallel benchmarks are presented. 
677
678 As mentioned previously, the experiments 
679 were conducted over two sites of grid'5000,   Lyon and Nancy sites. 
680 Two scenarios were considered while selecting the clusters from these two sites :
681 \begin{itemize}
682 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
683 are connected via a long distance network.
684 \item In the second scenario nodes from three clusters that are 
685 located in one site, Nancy site.  
686 \end{itemize}
687
688 The main reason 
689 behind using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
690 scaling factors selection algorithm. Indeed, in the first scenario  the computations to communications ratio 
691 is very low due to the higher communication times which reduces the effect of DVFS operations.
692
693 The NAS parallel benchmarks are executed over 
694 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
695 are different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
696 Table \ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
697
698 \begin{table}[h]
699
700 \caption{The different clusters scenarios}
701 \centering
702 \begin{tabular}{|*{4}{c|}}
703 \hline
704 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
705                                       & Cluster & Site           & No. of  nodes     \\ 
706 \hline
707 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
708                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
709                                       & Griffon       & Nancy        & 6                      \\ 
710 \hline
711 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
712                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
713                                       & Griffon     &Nancy           & 12                     \\ 
714 \hline
715 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
716                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
717                                       & Griffon         & Nancy        & 6                      \\ 
718 \hline
719 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
720                                       & Graphene      & Nancy          & 12                     \\ \cline{2-4} 
721                                       & Griffon          & Nancy       & 12                       \\ 
722 \hline
723 \end{tabular}
724  \label{tab:sc}
725 \end{table}
726
727 \begin{figure}
728   \centering
729   \includegraphics[scale=0.5]{fig/eng_con_scenarios.eps}
730   \caption{The energy consumptions of NAS benchmarks over different scenarios }
731   \label{fig:eng_sen}
732 \end{figure}
733
734
735
736 \begin{figure}
737   \centering
738   \includegraphics[scale=0.5]{fig/time_scenarios.eps}
739   \caption{The execution times of NAS benchmarks over different scenarios }
740   \label{fig:time_sen}
741 \end{figure}
742
743 The NAS parallel benchmarks are executed over these two platforms
744  with different number of nodes, as in Table \ref{tab:sc}. 
745 The overall energy consumption of all the benchmarks solving the class D instance and
746 using the proposed frequency selection algorithm is measured 
747 using the equation of the reduced energy consumption, equation 
748 (\ref{eq:energy}). This model uses the measured dynamic and static 
749 power values  showed in Table \ref{table:grid5000}. The execution
750 time is measured for all the benchmarks over these different scenarios.  
751
752 The energy consumptions  and the execution times for all the benchmarks are 
753 presented in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
754
755 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site scenario 
756 for  16 and 32 nodes is lower than the energy consumed while using two sites. 
757 The long distance communications between the two distributed sites increase the idle time which leads to more static energy consumption. 
758  The execution times of these benchmarks 
759 over one site with 16 and 32 nodes are also lower when  compared to those of the  two sites 
760 scenario.
761
762 However, the  execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly affected 
763  in both scenarios. Even when the number of nodes is doubled. On the other hand, the communications of the rest of the benchmarks increases when using long distance communications between two sites or increasing the number of computing nodes.
764
765 \begin{figure}
766   \centering
767   \includegraphics[scale=0.5]{fig/eng_s.eps}
768   \caption{The energy saving of NAS benchmarks over different scenarios }
769   \label{fig:eng_s}
770 \end{figure}
771
772
773 \begin{figure}
774   \centering
775   \includegraphics[scale=0.5]{fig/per_d.eps}
776   \caption{The performance degradation of NAS benchmarks over different scenarios }
777   \label{fig:per_d}
778 \end{figure}
779
780
781 \begin{figure}
782   \centering
783   \includegraphics[scale=0.5]{fig/dist.eps}
784   \caption{The tradeoff distance of NAS benchmarks over different scenarios }
785   \label{fig:dist}
786 \end{figure}
787
788 The energy saving percentage is computed as the ratio between the reduced 
789 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
790 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
791 This figure shows that the energy saving percentages of one site scenario for
792 16 and 32 nodes are bigger than those of the two sites scenario which is due
793 to the higher  computations to communications ratio in the first scenario   
794 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computations times are higher than the communication times which 
795 results in  a lower energy consumption. Indeed, the dynamic  consumed power
796 is exponentially related to the CPU's frequency value. On the other side, the increase in the number of computing nodes can 
797 increase the communication times and thus produces less energy saving depending on the 
798 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
799 energy saving percentage in one site scenario when executed  over 16 nodes comparing to 32 nodes. While, LU and SP consume more energy with 16 nodes than 32 in one site  because there computations to 
800 communications ratio is not affected by the increase of the number of local communications. 
801
802
803 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
804 scenario, except for the   EP benchmark which has  no communications. Therefore, the energy saving percentage of this benchmark is 
805 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
806 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
807 this cluster is replaced with Taurus cluster which is more powerful. 
808 Therefore, the energy saving of EP benchmarks are bigger in the two site scenario due 
809 to the higher maximum difference between the computing powers of the nodes. 
810 In fact,  high
811 differences between the nodes' computing powers make the proposed frequencies selecting  
812 algorithm  select smaller frequencies for the powerful nodes which 
813 produces less energy consumption and thus more energy saving.
814 The best energy saving percentage was obtained in the one site scenario with 16 nodes, The energy consumption was on average reduced up to 30\%.
815
816
817 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks.
818 The performance degradation percentage  for the benchmarks running  on two sites  with
819 16 or 32  nodes is on average equal to 8\% or 4\% respectively. 
820
821  \textcolor{red}{ 
822 The proposed scaling algorithm selecting smaller frequencies in two sites scenario,
823 due to decreasing in the computations to communications ratio when the number of nodes is increased and
824 leads to less performance degradation percentage.  
825 In contrast, the performance degradation percentage  for the benchmarks running  on one site  with
826 16 or 32  nodes is on average equal to 3\% or 10\% respectively. 
827 The inverse is happens in this scenario when the number of computing nodes is increased 
828 the performance degradation percentage is decreased. So, using double number of computing 
829 nodes when the communications occur in high speed network not decreased the computations to 
830 communication ratio. Moreover, as shown in the figure \ref{fig:time_sen}, the execution time of one site scenario with 32 nodes 
831 are less by approximately double, linear speed-up, for most of the benchmarks comparing to the one site with 16 nodes scenario. 
832 This leads to increased the number of the critical nodes which any one of them may increased the overall the execution time of the benchmarks.
833 The EP benchmarks is gives the bigger performance degradation ratio, because there is no 
834 communications and no slack times in this benchmarks which their performance controlled by 
835 the computing powers of the nodes.
836 The tradeoff between these scenarios can be computed as in the tradeoff function \ref{eq:max}.
837 Figure \ref{fig:dist}, presents the tradeoff distance for all benchmarks  over all 
838 platform scenarios.  The one site scenario with 16 and 32 nodes had the best tradeoff distance 
839 compared to the two sites scenarios, due to the increase or decreased in the communications as mentioned before.
840 The one site scenario with 16 nodes is the best scenario in term of energy and performance tradeoff,
841 which on average is up 26\%.  Therefore, the tradeoff distance is related linearly to the  energy saving  
842 percentage. Finally, the best energy and performance tradeoff depends on the all of the following:
843 1) the computations to communications ratio when there is a communications and slack times, 2) the differences in computing powers 
844 between the computing nodes and 3) the differences in static and the dynamic powers of the nodes.}
845
846
847
848 \subsection{The experimental results of multicores clusters}
849 \label{sec.res-mc}
850 The grid'5000 clusters have different number of cores embedded in their nodes
851 as in the Table \ref{table:grid5000}. Moreover, the cores of each node are 
852 connected via shared memory model, the data transfer between cores' local 
853 memories achieved via the global memory \cite{rauber_book}. Therefore, in 
854 this section the proposed scaling algorithm is implemented over the  grid'5000 
855 clusters which are included multicores in the selected nodes as same as the 
856 two previous platform scenarios that mentioned in the section \ref{sec.res}.
857 The two platform scenarios, the two sites and one site scenarios,  with 32 
858 nodes are reconfigured to used multicores for each node. For example if 
859 the participating number of nodes from a certain cluster is equal to 12 nodes, 
860 in the multicores scenario the selected nodes is equal to 3 nodes with using 
861 4 cores for each of them to produced 12 cores. These scenarios with one  
862 core and  multicores are  demonstrated in Table \ref{table:sen-mc}. 
863 The energy consumptions and execution times of running the NAS parallel 
864 benchmarks, class D, over these four different scenarios are represented 
865 in the figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
866 The execution times of NAS  benchmarks over the one site multicores scenario 
867 is higher than the execution time of those running over one site multicores scenario. 
868 The reason in the one site multicores scenario the communication is increased significantly,
869 and all node's cores  share  the same node network link which increased 
870 the communication times. Whereas, the execution times of the NAS benchmarks  over 
871 the two site  multicores scenario is less than those executed over the two 
872 sites one core scenario. This goes back when using multicores is decreasing the communications. 
873 As explained previously, the cores shared same nodes' linkbut  the communications between the cores 
874 are still less than the communication times between the nodes over the long distance 
875 networks, and thus the over all execution time decreased. Generally, executing 
876 the NAS benchmarks over the one site one core scenario gives smaller execution times 
877 comparing to other scenarios. This due to each node in this scenario has it's 
878 dedicated network link that used independently by one core, while in the other 
879 scenarios the communication times are higher when using long distance communications 
880 link or using the  shared link communications between cores of each node. 
881 On the other hand, the energy consumptions of the NAS benchmarks over the 
882 one site one cores is less than the one site multicores scenario because 
883 this scenario had less execution time as mentioned before. Also, in the 
884 one site one core scenario the computations to communications ratio is 
885 higher, then the new scaled frequencies are decreased the dynamic energy 
886 consumption which is decreased exponentially 
887 with the new frequency scaling factors. These experiments also showed, the energy 
888 consumption and the execution times of EP and MG benchmarks over these four 
889 scenarios are not change a lot, because there are no or small communications 
890 which are increase or decrease the static power consumptions. 
891 The other benchmarks were showed that their energy consumptions and execution times 
892 are changed according to the decreasing or increasing in the communication 
893 times that are different from scenario to other or due to the amount of 
894 communications in each of them.
895
896 The energy saving percentages of all NAS benchmarks, as in figure 
897 \ref{fig:eng-s-mc}, running over these four scenarios are presented. The figure 
898 showed the energy saving percentages of NAS benchmarks over two sites multicores scenario is higher 
899 than two sites once core scenario, because  the computation 
900 times in this scenario is higher than the other one, then the more reduction in the 
901 dynamic energy can be obtained as mentioned previously. In contrast, in the one site one 
902 core and one site multicores scenarios the energy saving percentages 
903 are approximately equivalent, on average they are up to 25\%. In these  both scenarios there are a small difference  in the 
904 computations to communications ratio, leading the proposed scaling algorithm 
905 to selects the frequencies proportionally to these ratios and keeping 
906 as much as possible the energy saving percentages the same. The 
907 performance degradation percentages of NAS benchmarks are presented in
908 figure \ref{fig:per-d-mc}. This figure indicates that performance 
909 degradation percentages of running NAS benchmarks over two sites 
910 multocores scenario, on average is equal to 7\%,  gives more performance degradation percentage
911 than two sites  one core scenario, which on average is equal to 4\%. 
912 Moreover, using the two sites multicores scenario increased 
913 the computations to communications ratio, which may be increased 
914 the overall execution time  when the proposed scaling algorithm is applied and scaling down the frequencies.  
915 The inverse was happened when the benchmarks are executed  over one 
916 site one core scenario their performance degradation percentages, on average
917 is equal to 10\%, are higher than those executed over one sit one core, 
918 which on average is equal to 7\%. So, in one site 
919 multicores scenario the computations to communications ratio is decreased
920 as mentioned before, thus selecting new frequencies are not increased 
921 the overall execution time. The tradeoff distances of all NAS 
922 benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
923 These  tradeoff distances are used to verified which scenario is the best in term of 
924 energy and performance ratio. The one sites multicores scenario is the best  scenario in term of
925 energy and performance tradeoff, on average is equal to 17.6\%, when comparing to the one site one core 
926 scenario, one average is equal to 15.3\%.  The one site multicores  scenario 
927 has the same  energy saving percentages of the one site one core scenario but
928 with less performance degradation. The two sites multicores scenario is gives better 
929 energy and performance tradeoff, one average is equal to 14.7\%, than the two sites
930 one core, on average is equal to 13.3\%.
931 Finally, using multicore in both scenarios increased the energy and performance tradeoff 
932 distance. This generally due to using multicores was increased the computations to communications 
933 ratio in two sites scenario and thus the energy saving percentage increased over the performance degradation percentage, whereas  this ratio was decreased  
934 in one site  scenario causing the performance degradation percentage decreased over the energy saving percentage.
935
936
937
938
939
940 \begin{table}[]
941 \centering
942 \caption{The multicores scenarios}
943
944 \begin{tabular}{|*{4}{c|}}
945 \hline
946 Scenario name                          & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of  nodes\\ in each cluster\end{tabular} & 
947                                        \begin{tabular}[c]{@{}c@{}}No. of  cores\\ for each node\end{tabular}  \\ \hline
948 \multirow{3}{*}{Two sites/ one core}   & Taurus       & 10              & 1                   \\ \cline{2-4}
949                                        & Graphene     & 10              & 1                   \\ \cline{2-4}
950                                        & Griffon      & 12              & 1                   \\ \hline
951 \multirow{3}{*}{Two sites/ multicores} & Taurus       & 3               & 3 or 4              \\ \cline{2-4}
952                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
953                                        & Griffon      & 3               & 4                   \\ \hline
954 \multirow{3}{*}{One site/ one core}    & Graphite     & 4               & 1                   \\  \cline{2-4}
955                                        & Graphene     & 12              & 1                   \\  \cline{2-4}
956                                        & Griffon      & 12              & 1                   \\ \hline
957 \multirow{3}{*}{One site/ multicores}  & Graphite     & 3               & 3 or 4              \\  \cline{2-4}
958                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
959                                        & Griffon      & 3               & 4                   \\ \hline
960 \end{tabular}
961 \label{table:sen-mc}
962 \end{table}
963
964 \begin{figure}
965   \centering
966   \includegraphics[scale=0.5]{fig/eng_con.eps}
967   \caption{Comparing the  energy consumptions of running NAS benchmarks over one core and multicores scenarios }
968   \label{fig:eng-cons-mc}
969 \end{figure}
970
971
972   \begin{figure}
973   \centering
974   \includegraphics[scale=0.5]{fig/time.eps}
975   \caption{Comparing the  execution times of running NAS benchmarks over one core and multicores scenarios }
976   \label{fig:time-mc}
977 \end{figure}
978
979  \begin{figure}
980   \centering
981   \includegraphics[scale=0.5]{fig/eng_s_mc.eps}
982   \caption{The energy saving of running NAS benchmarks over one core and multicores scenarios }
983   \label{fig:eng-s-mc}
984 \end{figure}
985
986 \begin{figure}
987   \centering
988   \includegraphics[scale=0.5]{fig/per_d_mc.eps}
989   \caption{The performance degradation of running NAS benchmarks over one core and multicores scenarios }
990   \label{fig:per-d-mc}
991 \end{figure}
992
993 \begin{figure}
994   \centering
995   \includegraphics[scale=0.5]{fig/dist_mc.eps}
996   \caption{The tradeoff distance of running NAS benchmarks over one core and multicores scenarios }
997   \label{fig:dist-mc}
998 \end{figure}
999
1000 \subsection{The results of using different static power consumption scenarios}
1001 \label{sec.pow_sen}
1002 The static power consumption for one core of the computing node is the leakage power
1003 consumption when this core is in the idle state. The node's idle state power value that measured 
1004 as in section \ref{sec.grid5000} had many power consumptions embedded  such as 
1005 all cores static powers in addition to the power consumption of the other devices. So, the static power for one core 
1006 can't measured precisely. On the other hand, while the static power consumption of
1007 one core representing the core's power when there is no any computation,  thus 
1008 the majority of ratio of the total power consumption is depends on the dynamic power consumption. 
1009 Despite that, the static power consumption is becomes more important  when the execution time 
1010 increased using DVFS. Therefore, the objective of this section is to verify the ability of the proposed 
1011 frequencies selecting algorithm when the static power consumption is changed. 
1012
1013 All the results obtained in the previous sections depend on the measured dynamic power 
1014 consumptions as in table \ref{table:grid5000}. Moreover, the static power consumption is assumed for
1015 one core represents  20\% of the measured dynamic power of that core. 
1016 This assumption is extended in this section to taking into account others ratios for the static power consumption.
1017 In addition to the previous ratio of the static power consumption, two other scenarios are used which 
1018 all of these scenarios can be denoted as follow: 
1019 \begin{itemize}
1020 \item 10\% of static power scenario 
1021 \item 20\% of static power scenario 
1022 \item 30\% of static power scenario 
1023 \end{itemize}
1024
1025 These three scenarios represented the ratio of the static power consumption that can be computed from 
1026 the dynamic power consumption of the core. The NAS benchmarks of class D are executed over 16 nodes
1027 in the Nancy site using three clusters: Graphite, Graphene and Griffon. As same as used before, the one site 16 nodes
1028 platform scenario explained in the last experiments, as in table \ref{tab:sc}, is uses to run 
1029 the NAS benchmarks with these static power scenarios. 
1030
1031  \begin{figure}
1032   \centering
1033   \includegraphics[scale=0.5]{fig/eng_pow.eps}
1034   \caption{The energy saving percentages for NAS benchmarks of the three power scenario}
1035   \label{fig:eng-pow}
1036 \end{figure}
1037
1038 \begin{figure}
1039   \centering
1040   \includegraphics[scale=0.5]{fig/per_pow.eps}
1041   \caption{The performance degradation percentages for NAS benchmarks of the three power scenario}
1042   \label{fig:per-pow}
1043 \end{figure}
1044
1045
1046 \begin{figure}
1047   \centering
1048   \includegraphics[scale=0.5]{fig/dist_pow.eps}
1049   \caption{The tradeoff distance for NAS benchmarks of the three power scenario}
1050   \label{fig:dist-pow}
1051 \end{figure}
1052
1053 \begin{figure}
1054   \centering
1055   \includegraphics[scale=0.47]{fig/three_scenarios.pdf}
1056   \caption{Comparing the selected frequencies of MG benchmarks for three static power scenarios}
1057   \label{fig:fre-pow}
1058 \end{figure}
1059
1060 The energy saving percentages of NAS benchmarks with these three static power scenarios are presented 
1061 in figure \ref{fig:eng_sen}. This figure showed the 10\% of static power scenario 
1062 gives the biggest energy saving percentage comparing to 20\% and 30\% static power 
1063 scenario. When using smaller ratio of static power consumption, the proposed 
1064 frequencies selecting algorithm selects smaller frequencies, bigger scaling factors, 
1065 because the static energy consumption not increased significantly the overall energy 
1066 consumption. Therefore, more energy reduction can be achieved  when the frequencies are scaled down.
1067 For example figure \ref{fig:fre-pow}, illustrated that the proposed algorithm  
1068 proportionally scaled down the new computed frequencies with the overall predicted energy 
1069 consumption. The results of 30\% static power scenario gives the smallest energy saving percentages 
1070 because the new selected frequencies produced smaller ratio in the reduced energy consumption. 
1071 Furthermore, The proposed algorithm tries to limit selecting smaller frequencies that increased 
1072 the static energy consumption if the static power consumption is increased.
1073 The performance degradation percentages are presented in the figure \ref{fig:per-pow},
1074 the 30\% of static power scenario had less performance degradation percentage, because
1075 bigger frequencies was selected due to the big ratio in the static power consumption.
1076 The inverse was happens in the 20\% and 30\% scenario, the algorithm was selected 
1077 biggest frequencies, smaller scaling factors, according to this increased in the static power ratios.
1078 The tradoff distance for the NAS benchmarks with these three static powers scenarios 
1079 are presented in the figure \ref{fig:dist}. The results showed that the tradeoff
1080 distance is the best when the  10\% of static power scenario is used, and this percentage 
1081 is decreased for the other two scenarios propositionally to their static power ratios.
1082 In EP benchmarks, the results of energy saving, performance degradation and tradeoff 
1083 distance are showed small differences when the these static power scenarios were used, 
1084 because this benchmark not has communications. The proposed algorithm is selected 
1085 same frequencies in this benchmark when all these static power scenarios are used. 
1086 The small differences in the results are due to the static power is consumed during the computation 
1087 times side by side to the dynamic power consumption, knowing that the dynamic power consumption 
1088 representing the highest ratio in the total power consumption of the core, then any change in 
1089 the static power during these times have less affect on the overall energy consumption. While the 
1090 inverse was happens for the rest of the benchmarks which have the communications 
1091 that increased the static energy consumption linearly to the mount of communications 
1092 in these benchmarks.
1093
1094  
1095
1096 \subsection{The comparison of the proposed frequencies selecting algorithm }
1097 \label{sec.compare_EDP}
1098
1099
1100   
1101 \section{Conclusion}
1102 \label{sec.concl}
1103
1104
1105
1106 \section*{Acknowledgment}
1107
1108 This work  has been  partially supported by  the Labex ACTION  project (contract
1109 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the supercomputer
1110 facilities  of the  Mésocentre de  calcul de  Franche-Comté. As  a  PhD student,
1111 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
1112 supporting his work.
1113
1114 % trigger a \newpage just before the given reference
1115 % number - used to balance the columns on the last page
1116 % adjust value as needed - may need to be readjusted if
1117 % the document is modified later
1118 %\IEEEtriggeratref{15}
1119
1120 \bibliographystyle{IEEEtran}
1121 \bibliography{IEEEabrv,my_reference}
1122 \end{document}
1123
1124 %%% Local Variables:
1125 %%% mode: latex
1126 %%% TeX-master: t
1127 %%% fill-column: 80
1128 %%% ispell-local-dictionary: "american"
1129 %%% End:
1130
1131 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
1132 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
1133 % LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
1134 %  LocalWords:  Spiliopoulos scalability