percentage. Finally, the best energy and performance tradeoff depends on the all of the following:
1) the computations to communications ratio when there is a communications and slack times, 2) the differences in computing powers
between the computing nodes and 3) the differences in static and the dynamic powers of the nodes.}
+
+
+
\subsection{The experimental results of multicores clusters}
\label{sec.res-mc}
The grid'5000 clusters have different number of cores embedded in their nodes
\label{fig:dist-mc}
\end{figure}
-\subsection{The results for different power consumption scenarios}
-\label{sec.compare}
+\subsection{The results of using different static power consumption scenarios}
+\label{sec.pow_sen}
+The static power consumption for one core of the computing node is the leakage power
+consumption when this core is in the idle state. The node's idle state power value that measured
+as in section \ref{sec.grid5000} had many power consumptions embedded such as
+all cores static powers in addition to the power consumption of the other devices. So, the static power for one core
+can't measured precisely. On the other hand, while the static power consumption of
+one core representing the core's power when there is no any computation, thus
+the majority of ratio of the total power consumption is depends on the dynamic power consumption.
+Despite that, the static power consumption is becomes more important when the execution time
+increased using DVFS. Therefore, the objective of this section is to verify the ability of the proposed
+frequencies selecting algorithm when the static power consumption is changed.
+
+All the results obtained in the previous sections depend on the measured dynamic power
+consumptions as in table \ref{table:grid5000}. Moreover, the static power consumption is assumed for
+one core represents 20\% of the measured dynamic power of that core.
+This assumption is extended in this section to taking into account others ratios for the static power consumption.
+In addition to the previous ratio of the static power consumption, two other scenarios are used which
+all of these scenarios can be denoted as follow:
+\begin{itemize}
+\item 10\% of static power scenario
+\item 20\% of static power scenario
+\item 30\% of static power scenario
+\end{itemize}
+
+These three scenarios represented the ratio of the static power consumption that can be computed from
+the dynamic power consumption of the core. The NAS benchmarks of class D are executed over 16 nodes
+in the Nancy site using three clusters: Graphite, Graphene and Griffon. As same as used before, the one site 16 nodes
+platform scenario explained in the last experiments, as in table \ref{tab:sc}, is uses to run
+the NAS benchmarks with these static power scenarios.
+
+ \begin{figure}
+ \centering
+ \includegraphics[scale=0.5]{fig/eng_pow.eps}
+ \caption{The energy saving percentages for NAS benchmarks of the three power scenario}
+ \label{fig:eng-pow}
+\end{figure}
+
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.5]{fig/per_pow.eps}
+ \caption{The performance degradation percentages for NAS benchmarks of the three power scenario}
+ \label{fig:per-pow}
+\end{figure}
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.5]{fig/dist_pow.eps}
+ \caption{The tradeoff distance for NAS benchmarks of the three power scenario}
+ \label{fig:dist-pow}
+\end{figure}
+\begin{figure}
+ \centering
+ \includegraphics[scale=0.47]{fig/three_scenarios.pdf}
+ \caption{Comparing the selected frequencies of MG benchmarks for three static power scenarios}
+ \label{fig:fre-pow}
+\end{figure}
-\subsection{The comparison of the proposed scaling algorithm }
+The energy saving percentages of NAS benchmarks with these three static power scenarios are presented
+in figure \ref{fig:eng_sen}. This figure showed the 10\% of static power scenario
+gives the biggest energy saving percentage comparing to 20\% and 30\% static power
+scenario. When using smaller ratio of static power consumption, the proposed
+frequencies selecting algorithm selects smaller frequencies, bigger scaling factors,
+because the static energy consumption not increased significantly the overall energy
+consumption. Therefore, more energy reduction can be achieved when the frequencies are scaled down.
+For example figure \ref{fig:fre-pow}, illustrated that the proposed algorithm
+proportionally scaled down the new computed frequencies with the overall predicted energy
+consumption. The results of 30\% static power scenario gives the smallest energy saving percentages
+because the new selected frequencies produced smaller ratio in the reduced energy consumption.
+Furthermore, The proposed algorithm tries to limit selecting smaller frequencies that increased
+the static energy consumption if the static power consumption is increased.
+The performance degradation percentages are presented in the figure \ref{fig:per-pow},
+the 30\% of static power scenario had less performance degradation percentage, because
+bigger frequencies was selected due to the big ratio in the static power consumption.
+The inverse was happens in the 20\% and 30\% scenario, the algorithm was selected
+biggest frequencies, smaller scaling factors, according to this increased in the static power ratios.
+The tradoff distance for the NAS benchmarks with these three static powers scenarios
+are presented in the figure \ref{fig:dist}. The results showed that the tradeoff
+distance is the best when the 10\% of static power scenario is used, and this percentage
+is decreased for the other two scenarios propositionally to their static power ratios.
+In EP benchmarks, the results of energy saving, performance degradation and tradeoff
+distance are showed small differences when the these static power scenarios were used,
+because this benchmark not has communications. The proposed algorithm is selected
+same frequencies in this benchmark when all these static power scenarios are used.
+The small differences in the results are due to the static power is consumed during the computation
+times side by side to the dynamic power consumption, knowing that the dynamic power consumption
+representing the highest ratio in the total power consumption of the core, then any change in
+the static power during these times have less affect on the overall energy consumption. While the
+inverse was happens for the rest of the benchmarks which have the communications
+that increased the static energy consumption linearly to the mount of communications
+in these benchmarks.
+
+
+
+\subsection{The comparison of the proposed frequencies selecting algorithm }
\label{sec.compare_EDP}
-
+
\section{Conclusion}
\label{sec.concl}
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 14:26:55 2015
+%%CreationDate: Wed Sep 30 10:32:15 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 14:26:55 2015)
+ /CreationDate (Wed Sep 30 10:32:15 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1827 3248 327 55 40 45 2 PatternFill
0.10 0.10 0.44 C 892 352 73 1649 40 45 2 PatternFill
0.10 0.10 0.44 C 1438 352 73 1986 40 45 2 PatternFill
-0.10 0.10 0.44 C 1984 352 73 1788 40 45 2 PatternFill
+0.10 0.10 0.44 C 1984 352 73 1650 40 45 2 PatternFill
0.10 0.10 0.44 C 2530 352 73 1435 40 45 2 PatternFill
0.10 0.10 0.44 C 3076 352 73 2301 40 45 2 PatternFill
0.10 0.10 0.44 C 3622 352 73 2236 40 45 2 PatternFill
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 15:12:32 2015
+%%CreationDate: Tue Sep 29 16:28:50 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 15:12:32 2015)
+ /CreationDate (Tue Sep 29 16:28:50 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1.000 1827 3230 327 55 BoxColFill
0.10 0.10 0.44 C 1.000 921 352 88 2178 BoxColFill
0.10 0.10 0.44 C 1.000 1467 352 88 2060 BoxColFill
-0.10 0.10 0.44 C 1.000 2013 352 88 1862 BoxColFill
+0.10 0.10 0.44 C 1.000 2013 352 88 1905 BoxColFill
0.10 0.10 0.44 C 1.000 2559 352 88 2335 BoxColFill
0.10 0.10 0.44 C 1.000 3105 352 88 2705 BoxColFill
0.10 0.10 0.44 C 1.000 3651 352 88 2692 BoxColFill
1.00 0.71 0.76 C 1.000 1827 3010 327 55 BoxColFill
1.00 0.71 0.76 C 1.000 1139 352 88 266 BoxColFill
1.00 0.71 0.76 C 1.000 1685 352 88 1018 BoxColFill
-1.00 0.71 0.76 C 1.000 2231 352 88 1832 BoxColFill
+1.00 0.71 0.76 C 1.000 2231 352 88 1441 BoxColFill
1.00 0.71 0.76 C 1.000 2777 352 88 359 BoxColFill
1.00 0.71 0.76 C 1.000 3323 352 88 1466 BoxColFill
1.00 0.71 0.76 C 1.000 3869 352 88 1074 BoxColFill
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 14:26:16 2015
+%%CreationDate: Wed Sep 30 10:33:44 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 14:26:16 2015)
+ /CreationDate (Wed Sep 30 10:33:44 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1.000 1718 3151 327 55 BoxColFill
0.10 0.10 0.44 C 1.000 983 975 73 1484 BoxColFill
0.10 0.10 0.44 C 1.000 1529 975 73 1787 BoxColFill
-0.10 0.10 0.44 C 1.000 2075 975 73 1610 BoxColFill
+0.10 0.10 0.44 C 1.000 2075 975 73 1485 BoxColFill
0.10 0.10 0.44 C 1.000 2621 975 73 1292 BoxColFill
0.10 0.10 0.44 C 1.000 3167 975 73 2071 BoxColFill
0.10 0.10 0.44 C 1.000 3713 975 73 2013 BoxColFill
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 14:26:03 2015
+%%CreationDate: Wed Sep 30 10:33:54 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 14:26:03 2015)
+ /CreationDate (Wed Sep 30 10:33:54 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1.000 1718 3202 327 55 BoxColFill
0.10 0.10 0.44 C 1.000 983 352 73 2245 BoxColFill
0.10 0.10 0.44 C 1.000 1529 352 73 2540 BoxColFill
-0.10 0.10 0.44 C 1.000 2075 352 73 2028 BoxColFill
+0.10 0.10 0.44 C 1.000 2075 352 73 1865 BoxColFill
0.10 0.10 0.44 C 1.000 2621 352 73 1796 BoxColFill
0.10 0.10 0.44 C 1.000 3167 352 73 2675 BoxColFill
0.10 0.10 0.44 C 1.000 3713 352 73 2529 BoxColFill
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 14:25:11 2015
+%%CreationDate: Tue Sep 29 16:30:16 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 14:25:11 2015)
+ /CreationDate (Tue Sep 29 16:30:16 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1.000 1718 3248 327 55 BoxColFill
0.10 0.10 0.44 C 1.000 921 352 88 2602 BoxColFill
0.10 0.10 0.44 C 1.000 1467 352 88 2605 BoxColFill
-0.10 0.10 0.44 C 1.000 2013 352 88 1749 BoxColFill
+0.10 0.10 0.44 C 1.000 2013 352 88 1788 BoxColFill
0.10 0.10 0.44 C 1.000 2559 352 88 2310 BoxColFill
0.10 0.10 0.44 C 1.000 3105 352 88 2771 BoxColFill
0.10 0.10 0.44 C 1.000 3651 352 88 2706 BoxColFill
0.24 0.70 0.44 C 1.000 1718 3138 327 55 BoxColFill
0.24 0.70 0.44 C 1.000 1030 352 88 2096 BoxColFill
0.24 0.70 0.44 C 1.000 1576 352 88 2371 BoxColFill
-0.24 0.70 0.44 C 1.000 2122 352 88 1753 BoxColFill
+0.24 0.70 0.44 C 1.000 2122 352 88 1740 BoxColFill
0.24 0.70 0.44 C 1.000 2668 352 88 1676 BoxColFill
0.24 0.70 0.44 C 1.000 3214 352 88 2497 BoxColFill
0.24 0.70 0.44 C 1.000 3760 352 88 2360 BoxColFill
1.00 0.71 0.76 C 1.000 1718 3028 327 55 BoxColFill
1.00 0.71 0.76 C 1.000 1139 352 88 671 BoxColFill
1.00 0.71 0.76 C 1.000 1685 352 88 942 BoxColFill
-1.00 0.71 0.76 C 1.000 2231 352 88 1745 BoxColFill
+1.00 0.71 0.76 C 1.000 2231 352 88 1468 BoxColFill
1.00 0.71 0.76 C 1.000 2777 352 88 326 BoxColFill
1.00 0.71 0.76 C 1.000 3323 352 88 1464 BoxColFill
1.00 0.71 0.76 C 1.000 3869 352 88 1038 BoxColFill
%!PS-Adobe-2.0
%%Creator: gnuplot 4.6 patchlevel 6
-%%CreationDate: Fri Sep 11 14:27:46 2015
+%%CreationDate: Wed Sep 30 10:37:43 2015
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 554 410
%%Orientation: Portrait
/Author (afanfakh)
% /Producer (gnuplot)
% /Keywords ()
- /CreationDate (Fri Sep 11 14:27:46 2015)
+ /CreationDate (Wed Sep 30 10:37:43 2015)
/DOCINFO pdfmark
end
} ifelse
0.10 0.10 0.44 C 1827 3248 327 55 40 45 2 PatternFill
0.10 0.10 0.44 C 892 352 73 2096 40 45 2 PatternFill
0.10 0.10 0.44 C 1438 352 73 2371 40 45 2 PatternFill
-0.10 0.10 0.44 C 1984 352 73 1893 40 45 2 PatternFill
+0.10 0.10 0.44 C 1984 352 73 1740 40 45 2 PatternFill
0.10 0.10 0.44 C 2530 352 73 1676 40 45 2 PatternFill
0.10 0.10 0.44 C 3076 352 73 2497 40 45 2 PatternFill
0.10 0.10 0.44 C 3622 352 73 2360 40 45 2 PatternFill