]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrected the related work part
authorjean-claude <jean-claude.charr@univ-fcomte.fr>
Mon, 24 Nov 2014 12:44:11 +0000 (13:44 +0100)
committerjean-claude <jean-claude.charr@univ-fcomte.fr>
Mon, 24 Nov 2014 12:44:11 +0000 (13:44 +0100)
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/mpi-energy2

Conflicts:
Heter_paper.tex

1  2 
Heter_paper.tex

diff --cc Heter_paper.tex
index e411a70b4b967c03e205f72db9b846a078965e4a,ab0be1f8506985f40b23f92153d2d6a676434f1b..ec89460ab3efd41c376e64e28ca4ea17a8365b86
@@@ -119,55 -134,74 +134,55 @@@ on a heterogeneous platform. It also sh
  different power scenarios and comparing them. 
  Finally, we conclude in Section~\ref{sec.concl} with a summary and some future works.
  
- \textbf{never use we in an article and the algorithm is not heterogeneous! you cannot use scaling factors before defining what they are.}
  \section{Related works}
  \label{sec.relwork}
 -Energy reduction process for high performance clusters recently performed using 
 -dynamic voltage and frequency scaling (DVFS) technique. DVFS is a technique enabled 
 -in modern processors to scaled down both of the voltage and the frequency of 
 -the CPU while it is in the computing mode to reduce the energy consumption. DVFS is 
 -also  allowed in the graphical processors GPUs, to achieved the same goal. Applying 
 -DVFS has a dramatical side effect if it is applied to minimum levels to gain more 
 -energy reduction, producing  a high percentage of performance degradations for the 
 -parallel applications.  Many researchers used different strategies to solve this 
 -nonlinear problem for example in
 -~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}, their methods 
 -add big overheads to the algorithm to select the suitable frequency.  
 -This paper presents a method 
 -to find the optimal set of frequencies for heterogeneous cluster to 
 -simultaneously optimize both the energy and the execution time  without adding big 
 -overhead. This work is developed from our previous work of homogeneous cluster~\cite{Our_first_paper}. 
 -Therefore we are interested to present some works that concerned the heterogeneous clusters 
 -enabled DVFS. In general, the heterogeneous cluster works fall into two categorizes: 
 -GPUs-CPUs heterogeneous clusters and CPUs-CPUs heterogeneous clusters. In GPUs-CPUs 
 -heterogeneous clusters some parallel tasks executed on  GPUs and the others executed 
 -on  CPUs. As an example of these works, Luley et al.
 +DVFS is a technique enabled 
 +in modern processors to scale down both the voltage and the frequency of 
 +the CPU while computing, in order to reduce the energy consumption of the processor. DVFS is 
 +also  allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation.  Many researchers used different strategies to tackle this problem. Some of them used online methods that compute the new frequency while executing the application \textbf{add a reference for an online method here}. Others used offline methods that might need to run the application and profile it before selecting the new frequency \textbf{add a reference for an offline method}. The methods could be heuristics, exact  or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform,  synchronous or asynchronous application, ... 
 +
 +In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
 +Some works have already been done for such platforms and it can be classified into two types of heterogeneous platforms: 
 +\begin{itemize}
 +
 +\item the platform is composed of homogeneous GPUs and homogeneous CPUs.
 +\item the platform is only composed of heterogeneous CPUs.
 +
 +\end{itemize}
 +
 +For the first type of platform, the compute intensive parallel tasks are executed on the  GPUs and the rest are executed 
 +on the CPUs.  Luley et al.
  ~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed  a heterogeneous 
 -cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal is to determined the 
 -energy efficiency as a function of performance per watt, the best tradeoff is done when the 
 -performance per watt function is maximized. In the work of Kia Ma et al.
 -~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, they developed a scheduling 
 -algorithm to distributed different workloads proportional to the computing power of the node 
 -to be executed on CPU or GPU, emphasize all tasks must be finished in the same time. 
 -Recently, Rong et al.~\cite{Rong_Effects.of.DVFS.on.K20.GPU}, Their study explain that 
 -a heterogeneous clusters enabled DVFS using GPUs and CPUs gave better energy and performance 
 -efficiency than other clusters composed of only CPUs. 
 -The CPUs-CPUs heterogeneous clusters consist of number of computing nodes  all of the type CPU. 
 -Our work in this paper can be classified to this type of the clusters. 
 -As an example of these works see  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling} work, 
 -They developed a policy to dynamically assigned the frequency to a heterogeneous cluster. 
 -The goal is to minimizing a fixed metric of $energy*delay^2$. Where our proposed method is automatically 
 -optimized  the relation between the energy and the delay of the iterative applications. 
 -Other works such as Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling}, 
 -their algorithm divided the executed tasks into two types: the critical and 
 -non critical tasks. The algorithm scaled down the frequency of the non critical tasks 
 -as function to the  amount of the slack and communication times that 
 -have with maximum of performance degradation percentage less than 10\%. In our method there is no 
 -fixed bounds for performance degradation percentage and the bound is dynamically computed 
 -according to the energy and the performance tradeoff relation of the executed application. 
 -There are some approaches used a heterogeneous cluster composed from two different types 
 -of Intel and AMD processors such as~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS} 
 -and \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, they predicated  both the energy 
 -and the performance for each frequency gear, then the algorithm selected the best gear that gave 
 -the best tradeoff. In contrast our algorithm works over a heterogeneous  platform composed of 
 -four different types of processors. Others approaches such as 
 -\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
 -they are selected the best frequencies for a specified heterogeneous clusters offline using some 
 -heuristic methods. While our proposed algorithm works online during the execution time of 
 -iterative application. Greedy dynamic approach used by Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements},  
 -minimized the power consumption of a heterogeneous severs  with time/space complexity, this approach 
 -had considerable overhead. In our proposed frequency selecting algorithm has very small overhead and 
 -it is works without any previous analysis for the application time complexity. The primary 
 -contributions of our paper are :
 +cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal was to maximize the 
 +energy efficiency of the platform during computation by maximizing the number of FLOPS per watt generated. 
 +In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et al. developed a scheduling 
 +algorithm that distributes  workloads proportional to the computing power of the nodes which could be a GPU or a CPU. All the tasks must be completed at the same time.
 +In~\cite{Rong_Effects.of.DVFS.on.K20.GPU}, Rong et al. showed that 
 +a heterogeneous (GPUs and CPUs) cluster that enables DVFS gave better energy and performance 
 +efficiency than other clusters only composed of  CPUs.
 + 
 +The work presented in this paper concerns the second type of platform,, with heterogeneous CPUs.
 +Many methods were conceived to reduce the energy consumption of this type of platform.  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling}  
 +developed a method that minimize the value of $energy*delay^2$ by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster. \textbf{should define the delay} Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} propose
 +an algorithm that divides the executed tasks into two types: the critical and 
 +non critical tasks. The algorithm scales down the frequency of  non critical tasks proportionally to their  slack and communication times while limiting  the performance degradation percentage to less than 10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS} 
 +and \cite{Spiliopoulos_Green.governors.Adaptive.DVFS},  a heterogeneous cluster composed of two  types 
 +of Intel and AMD processors. The consumed energy 
 +and the performance for each frequency gear were predicted, then the algorithm selected the best gear that gave 
 +the best tradeoff. \textbf{what energy model they used? what method they used? }
 +In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
 + the best frequencies for a specified heterogeneous cluster are selected offline using some 
 +heuristic. Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic approach to  
 +minimize the power consumption of heterogeneous severs  with time/space complexity \textbf{what does it mean}. This approach 
 +had considerable overhead.
 +In contrast to the above described papers, this paper presents the following contributions :
  \begin{enumerate}
 -\item It is presents  a new online frequency selecting algorithm which has very small 
 -      overhead and not need for any training and profiling.
 -\item It is develops a new energy model for iterative distributed applications running over 
 -       a heterogeneous clusters, taking into account the communication and slack times.
 -\item The proposed frequency selecting algorithm predicts both the energy and the execution time 
 -      of the iterative application running over heterogeneous platform.
 -\item It demonstrates a new optimization function which maximize the performance and 
 -      minimize the energy consumption simultaneously.
 +\item  two new energy and performance models for message passing iterative synchronous applications running over 
 +       a heterogeneous platform. Both models takes into account the communication and slack times. The models can predict the required energy and the execution time of the application.
 +       
 +\item a new online frequency selecting algorithm for heterogeneous platforms. The algorithm has a very small 
 +      overhead and does not need for any training or profiling. It uses a new optimization function which simultaneously maximizes the performance and minimizes the energy consumption of a message passing iterative synchronous application .
++
        
  \end{enumerate}