]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some changes
authorafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 30 May 2016 17:39:55 +0000 (19:39 +0200)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 30 May 2016 17:39:55 +0000 (19:39 +0200)
mpi-energy2-extension/Heter_paper.tex

index 329d52665d9659a659f1ff1ccc978bbe67aabd6e..fabd22e8c4c611b692c53d24b7b4d63c0085f284 100644 (file)
@@ -512,7 +512,7 @@ static energies for $M_i$ processors in $N$ clusters.  It is computed as follows
  E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot {} \\
   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\Tcp[ij]} \cdot S_{ij}) 
-  +\mathop{\min_{j=1,\dots M_i}} (\Tcm[hj]) ))
+  +\mathop{\min_{j=1,\dots M_h}} (\Tcm[hj]) ))
 \end{multline}
 
 
@@ -596,13 +596,13 @@ computed as in (\ref{eq:eorginal}).
 While the main goal is to optimize the energy and execution time at the same
 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
 According to (\ref{eq:pnorm}) and (\ref{eq:enorm}), the
-vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduces both the energy
+vector of frequency scaling factors $S_{11},S_{12},\dots,S_{NM_i}$ reduces both the energy
 and the execution time,  but the main objective is to produce
 maximum energy reduction with minimum execution time reduction.
 
 This problem can be solved by making the optimization process for energy and
 execution time follow the same evolution according to the vector of scaling factors
-$(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
+$(S_{11}, S_{12},\dots, S_{NM_i})$. Therefore, the equation of the
 normalized execution time is inverted which gives the normalized performance
 equation, as follows:
 \begin{equation}
@@ -1033,7 +1033,7 @@ nodes when the communications occur in high speed network does not decrease the
 communication ratio. 
 
 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
-the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
+the other benchmarks. Indeed, in the EP benchmark, there are no communication and no slack times and its 
 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
 The rest of the benchmarks showed different performance degradation percentages which decrease
 when the communication times increase and vice versa.
@@ -1098,7 +1098,7 @@ Scenario name                          & Cluster name & Nodes per cluster &
 
 The execution times for most of  the NAS  benchmarks are higher over the multi-core per node scenario 
 than over the single core per node  scenario. Indeed,  
- the communication times  are higher in the one site multi-core scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and become a bottleneck.    
+ the communication times  are higher in the  multi-core scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and become a bottleneck.    
 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
  one core scenario  than over the multi-core scenario because 
 the first scenario had less execution time than the latter which results in less static energy being consumed.