--- /dev/null
+# import numpy as np
+# import matplotlib.pyplot as plt
+
+# from topng import affine
+
+
+from numpy import exp,arange
+from pylab import meshgrid,cm,imshow,contour,clabel,colorbar,axis,title,show
+
+# the function that I'm going to plot
+def z_func(x,y):
+ return (1-(x**2+y**3))*exp(-(x**2+y**2)/2)
+
+x = arange(-3.0,3.0,0.1)
+y = arange(-3.0,3.0,0.1)
+X,Y = meshgrid(x, y) # grid of point
+Z = z_func(X, Y) # evaluation of the function on the grid
+
+im = imshow(Z,cmap=cm.RdBu) # drawing the function
+# adding the Contour lines with labels
+cset = contour(Z,arange(-1,1.5,0.2),linewidths=2,cmap=cm.Set2)
+clabel(cset,inline=True,fmt='%1.1f',fontsize=10)
+colorbar(im) # adding the colobar on the right
+# latex fashion title
+title('$z=(1-x^2+y^3) e^{-(x^2+y^2)/2}$')
+show()
+
+
+# dep = ( 0, pow(2, 8) ) # 9 bits
+# arr = ( 0, pow(2, 16) ) # 16 bits
+
+# deprange = np.arange(0, pow(2, 8), 1) # 9 bits
+
+
+# # test <<
+# # plt.plot(dep, arr, 'r--', deprange, deprange<<8, 'bs')
+# # plt.show()
+
+# # print("decalage")
+# # for i in deprange:
+# # print( 'i, i<<8:', (i, i<<8) )
+# # test >>
+
+# # test <<
+# print("affine transfo")
+# count = 0
+# for i in deprange:
+# ab = dep
+# cd = arr
+
+# a, b = ab[0], ab[1]
+# c, d = cd[0], cd[1]
+
+# r = max( 0, ( (i-a) * (d-c) / (b-a) + c ) )
+# r2 = i<<8
+# print( 'i, r:', (i, r) )
+# print( 'i, i<<8:', (i, r2) )
+# count += (r != r2)
+
+# print('count', count)
\ No newline at end of file
+from timeit import timeit
+import numpy as np
+
+
+INPUT_DIR = '../../Data/Images_anonymous/Case_0002/'
+OUT_DIR = './generated/'
+
+
+np.set_printoptions(edgeitems=272, linewidth=500)# hey numpy, take advantage of my large screen
+
+def check(p1, p2, Mat):
+ """
+ Not by @res
+ Uses the line defined by p1 and p2 to check array of
+ input indices against interpolated value
+
+ Returns boolean array, with True inside and False outside of shape
+ """
+ idxs = np.indices(Mat.shape) # Create 3D array of indices
+
+ try:
+ p1 = p1.astype(float)
+ p2 = p2.astype(float)
+
+ # Calculate max column idx for each row idx based on interpolated line between two points
+ max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
+ sign = np.sign(p2[0] - p1[0])
+ return idxs[1] * sign <= max_col_idx * sign
+ except RuntimeWarning as e:
+ print("p1, p2")
+ print(p1, p2)
+ return True
+
+def drawcontours(Mat, vertices):
+ """
+ Not by @res
+
+ Mat.shape : (20,20) or something like..
+ vertices : np.array([
+ [5,12],
+ [8,18],
+ [13,14],
+ [11,6],
+ [4,6],
+ ])
+
+ return Mat : the resulting matrix
+
+ Creates np.array with dimensions defined by shape
+ Fills polygon defined by vertices with ones, all other values zero"""
+
+ fill = np.ones(Mat.shape) # Initialize boolean array defining shape fill
+
+ # Create check array for each edge segment, combine into fill array
+ for k in range(vertices.shape[0]): # .shape[0] is the number of vertices, like len(vertices)
+ fill = np.all([fill, check(vertices[k-1], vertices[k], Mat)], axis=0)
+
+ # Set all values outside polygon to zero
+ # print("fill")
+ # print(fill)
+ Mat[np.invert(fill)] = 0
+
+ return Mat
+
def getdir(filepath):
- return '/'.join(filepath.split('/')[:-1]) + '/'
+ return '/'.join(filepath.split('/')[:-1]) + '/'
+
+
+if __name__ == '__main__':
+ # vertices = np.array(list(reversed([
+ # (5,12),
+ # (8,18),
+ # (13,14),
+ # (11,6),
+ # ]) ))
+
+ vertices = np.array([
+ [ 97, 129],
+ [103, 134],
+ [108, 139],
+ [109, 146],
+ [109, 155],
+ [105, 161],
+ [ 99, 165],
+ [ 93, 166],
+ [ 83, 164],
+ [ 78, 161],
+ [ 73, 153],
+ [ 72, 147],
+ [ 72, 140],
+ [ 75, 133],
+ [ 79, 129],
+ [ 85, 127],
+ [ 93, 127],
+ ])
+
+ from topng import topng
+ Mat = topng(INPUT_DIR+'Image00003', OUT_DIR + INPUT_DIR.split('/')[-2] +'-Image00003', epimask="/Users/user/Desktop/Master/Stage/Data/json/json_GT/0_Case_0002/contours/1.2.3.4.5.6/31/-85.9968/Epicardic.json")
+ # print(Mat)
+ # Mat = np.ones((20, 25)).astype(np.int32)
+ # Mat[:,:] = 14
+
+ # print( timeit(lambda:create_polygon([20,20], vertices), number=100000) )
+ polygon_array = drawcontours(Mat, vertices)
+ print(polygon_array.shape)
+ # print(polygon_array.astype(np.int32))
# |--> json_GT_part2
RT_PATH = '../../Data/json/'
JSON_GTS = ['json_GT', 'json_GT_part2']
-INFA_STR = 'Infa'
-EPI_STR = 'Epi'
-ENDO_STR = 'Endo'
+INFA_STR = 'Infarction'
+EPI_STR = 'Epicardic'
+ENDO_STR = 'Endocardic'
# Globals
featurerefs = []
--- /dev/null
+from os import listdir as ls
+from os.path import join, splitext
+from shutil import move as mv, copyfile as cp
+import pathlib
+
+def move(indir, outdir, n, distinction_word='', copy=True):# move n ordered files from indir to outdir
+ l = sorted(ls(indir))
+ for filename in l[:n]:
+ # print(join(indir, filename), join(outdir, filename))
+ pathlib.Path(outdir).mkdir(parents=True, exist_ok=True)
+ fname, fextension = splitext(filename)
+ action = cp if copy else mv
+ action(join(indir, filename), join(outdir, fname + distinction_word + fextension))
+
+if __name__ == '__main__':
+
+ move('./sample-crop-mask/train/infarctus', './generated/90/infarctus/crop-mask', 400) # move 400 ordered files from param 1 to param 2
+ move('./sample-crop-mask/train/noinfarctus', './generated/90/noinfarctus/crop-mask', 400)
+ move('./sample-crop-mask/valid/infarctus', './generated/90/infarctus/crop-mask', 100)
+ move('./sample-crop-mask/valid/noinfarctus', './generated/90/noinfarctus/crop-mask', 100)
\ No newline at end of file
--- /dev/null
+from timeit import timeit
+import numpy as np
+
+
+np.set_printoptions(linewidth=500)# hey numpy, take advantage of my large screen
+
+def check(p1, p2, base_array):
+ """
+ Not by @res
+ Uses the line defined by p1 and p2 to check array of
+ input indices against interpolated value
+
+ Returns boolean array, with True inside and False outside of shape
+ """
+ idxs = np.indices(base_array.shape) # Create 3D array of indices
+
+ p1 = p1.astype(float)
+ p2 = p2.astype(float)
+
+ # Calculate max column idx for each row idx based on interpolated line between two points
+ max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
+ sign = np.sign(p2[0] - p1[0])
+ return idxs[1] * sign <= max_col_idx * sign
+
+def create_polygon(shape, vertices):
+ """
+ Not by @res
+
+ shape : (20,20)
+ vertices : np.array([
+ (5,12),
+ (8,18),
+ (13,14),
+ (11,6),
+ (4,6),
+ ])
+
+ return base_array : the resulting matrix
+
+ Creates np.array with dimensions defined by shape
+ Fills polygon defined by vertices with ones, all other values zero"""
+ base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
+ base_array[:,:] = 4
+
+ fill = np.ones(base_array.shape) # Initialize boolean array defining shape fill
+ # print('timeit (base_array.shape) ', timeit( lambda:np.ones(base_array.shape) ))
+ # print('timeit (base_array.shape) * True ', timeit( lambda:np.ones(base_array.shape) * True ))
+ print('base_array.shape', base_array.shape)
+ print('fill.dtype', fill.dtype)
+ print('fill - 1:', fill)
+
+ # Create check array for each edge segment, combine into fill array
+ for k in range(vertices.shape[0]):# .shape[0] is the number of vertices, like len(vertices)
+ fill = np.all([fill, check(vertices[k-1], vertices[k], base_array)], axis=0)
+
+ # Set all values inside polygon to one
+ print("fill:")
+ print(fill)
+ base_array[np.invert(fill)] = 0
+
+ return base_array
+
+
+# (Row, Col) Vertices of Polygon (Defined Clockwise)
+vertices = np.array([
+ (5,12),
+ (8,18),
+ (13,14),
+ (11,6),
+ (4,6),
+])
+
+# print( timeit(lambda:create_polygon([20,20], vertices), number=100000) )
+polygon_array = create_polygon((14,19), vertices)
+print("1)")
+print(polygon_array.astype(np.int32))
+
+# This section prints numbers at each vertex for visual check, just comment out
+# to print an array of only zeros and ones
+# for n, vertex in enumerate(vertices):
+# polygon_array[vertex[0],vertex[1]] = 10*(n+1)
+
+# Simple routine to print the final array
+# for row in polygon_array.tolist():
+# for c in row:
+# print( '{:4.1f}'.format(c) )
+# print()
+# print("2)")
+# print(polygon_array.astype(np.int32))
\ No newline at end of file
import os
from os.path import isdir, join
from os import mkdir
+from timeit import timeit
import pydicom
from pprint import pprint
import numpy as np
import pathlib
import json
+from scipy import ndimage
+from scipy import misc
+
+
from decimal import Decimal as d, ROUND_HALF_UP as rhu
+# locals
+from helpers import drawcontours
+
+np.set_printoptions(edgeitems=372, linewidth=1200)# hey numpy, take advantage of my large screen
+
PNG16_MAX = pow(2, 16) - 1 # here if thinks the heaviest weight bit is for transparency or something not in use with dicom imgs
PNG8_MAX = pow(2, 8+1) - 1 # heaviest weight bit is 8 => 2**8, but dont forget the others: the reason of +1
INPUT_DIR = '../../Data/Images_anonymous/Case_0002/'
OUT_DIR = './generated/'
-#os.mkdir(outdir)
+
+CROP_SIZE = (45, 45) # (width, height)
+RED_COLOR = 100
def roundall(*l):
- return (round(e) for e in l)
+ return (int(round(e)) for e in l)
def ftrim(Mat):
+ # ---------- FTRIM ----------
# private func to trim the Matrix, but in one direction, vertically | horizontally
# return the slice, don't affect the Matrix
- # y | : for column, x -> : for rows
+ # y | : for (top to bottom), x -> : for (left to right)
# v
# not my fault, numpy architecture
+
y1 = y2 = i = 0
+
while i < len(Mat):# search by top
if Mat[i].max() > 0:
y1 = i
break
i += 1
+
i = len(Mat) - 1
while i >= 0:# search by bottom
if Mat[i].max() > 0:
# print('horizontal:vertical', horizontal, vertical)
return Mat[horizontal, vertical]
-def mask(Mat, maskfile):
- # return
- xmin, ymin, xmax, ymax = minmax(Mat, maskfile)
-
- y1 = y2 = i = 0
- while i < len(Mat):# search by top
- if i < ymin:
- Mat[i].fill(0)# paint the row in black
- else: break
- i += 1
-
- i = len(Mat) - 1
- while i >= 0:# search by bottom
- if i > ymax:
- Mat[i].fill(0)# paint the row in black
- else: break
- i -= 1
- # print('y1, y2', y1, y2)
- # return slice(y1, y2+1)# +1 to stop at y2
-
-
-def minmax(Mat, file):
+def getxy(file):
"""
{
'Image00001': [{
]
}]
}
- return xmin, ymin, xmax, ymax
+ return [(94.377, 137.39), ...]
"""
with open(file) as jsonfile:
data = json.load(jsonfile)
- pprint(data)
-
- for imgXXX in data:pass # get the value of key ~= "Image00001", cause it's dynamic
-
- for obj in data[imgXXX]:pass # get the object that contains the points, cause it's a list
- points = obj['points']
+ # pprint(data)
+
+ for imgXXX in data: pass # get the value of key ~= "Image00001", cause it's dynamic
+ for obj in data[imgXXX]: pass # get the object that contains the points, cause it's a list
+ points = obj['points']
# print("print, ", data)
# print("imgXXX, ", imgXXX)
# print("points, ", points)
# print("imgXXX, ", obj['points'])
- tmp = [(pt['x'], pt['y']) for pt in points ] # extract x,y. {'x': 94.377, 'y': 137.39} => (94.377, 137.39)
- r = np.array(tmp)
-
- print(r) # log
-
+ tmp = [np.array( (round(pt['x']), round(pt['y'])) ).astype(np.int32) for pt in
+ points] # extract x,y. {'x': 94.377, 'y': 137.39} => (94.377, 137.39)
+ return np.array(tmp, dtype=np.int32)
+ # return tmp
+
+def minmax(file):
+ r = getxy(file)
+ if r is not None:
+ # print(r) # log
xmin, ymin = np.min(r, axis=0)
xmax, ymax = np.max(r, axis=0)
- print('xmax, ymax', xmax, ymax)
- print('xmin, ymin', xmin, ymin)
+ # print('xmax, ymax', xmax, ymax)
+ # print('xmin, ymin', xmin, ymin)
return roundall(xmin, ymin, xmax, ymax)
+def crop(Mat, maskfile, size=None):
+ """
+ size : if filled with a (45, 45), it will search the center of maskfile then crop by center Mat
+ """
+ xmin, ymin, xmax, ymax = minmax(maskfile)
+ if size:
+ xcenter = (xmin + xmax) / 2
+ ycenter = (ymin + ymax) / 2
+
+ # crop coords
+ ymin, xmin, ymax, xmax = roundall(xcenter - size[0], ycenter - size[0],
+ xcenter + size[1], ycenter + size[1])
+
+ return Mat[xmin:xmax, ymin:ymax]
+
+def contour(Mat, maskfiles, color, thickness=1):
+ # ---------- CONTOUR POLYGON ----------
+ # thickness = -1 => fill it
+ # = 1 => just draw the contour with color
+ #
+ # return new Mat
+ contours = [getxy(maskfile) for maskfile in maskfiles] # list of list of coords,
+ # [
+ # [ (3,43), (3,4) ],
+ # [ (33,43) ]
+ # ]
+ # print("log: contours", contours)
+ if contours is not None:
+ # print('type contours', type(contours))
+ # print('contours', contours)
+ msk = np.zeros(Mat.shape, dtype=np.int32) # init all the mask with True...
+ cv2.drawContours(msk, contours, -1, True, thickness) # affect Mat, fill the polygone with False
+ msk = msk.astype(np.bool)
+ # print('msk')
+ # print(msk)
+ # print("bool", timeit(lambda:msk, number=1000))
+ # print("normal", timeit(lambda:msk.astype(np.bool), number=1000))
+ # Mat = cv2.cvtColor(Mat, cv2.COLOR_RGB2GRAY) # apply gray
+
+ # Mat = drawcontours(Mat, contours)
+ # pass
+ Mat[msk] = color # each True in msk means 0 in Mat. msk is like a selector
+ return Mat
+
+def mask(Mat, maskfile, color=0, thickness=-1):
+ # ---------- MASK POLYGON ----------
+ # thickness = -1 => fill it
+ # = 1 => just draw the contour with color
+ #
+ # return new Mat
+ contours = getxy(maskfile)
+ # print("log: contours", contours)
+ if contours is not None:
+ # print('type contours', type(contours))
+ # print('contours', contours)
+ msk = np.ones(Mat.shape, dtype=np.int32) # init all the mask with True...
+ cv2.drawContours(msk, [contours], -1, False, thickness) # affect msk, fill the polygone with False, => further, don't touch where is False
+ msk = msk.astype(np.bool)
+ # print('msk')
+ # print(msk)
+ # print("bool", timeit(lambda:msk, number=1000))
+ # print("normal", timeit(lambda:msk.astype(np.bool), number=1000))
+ # Mat = cv2.cvtColor(Mat, cv2.COLOR_RGB2GRAY) # apply gray
+
+ # Mat = drawcontours(Mat, contours)
+ # pass
+ Mat[msk] = color # each True in msk means 0 in Mat. msk is like a selector
+ return Mat
+
+
+def hollowmask(Mat, epifile, endofile, color=0, thickness=-1):
+ # ---------- MASK POLYGON ----------
+ # thickness = -1 => fill it
+ # = 1 => just draw the contour with color
+ #
+ # return new Mat
+ epicontours = getxy(epifile)
+ endocontours = getxy(endofile)
+ if epicontours is not None and endocontours is not None:
+ msk = np.ones(Mat.shape, dtype=np.int32) # init all the mask with True...
+ cv2.drawContours(msk, [epicontours], -1, False, thickness) # affect msk, fill the polygone with False, => further, don't touch where is False
+ cv2.drawContours(msk, [endocontours], -1, True, thickness) # fill the intern polygone with True, (the holow in the larger polygon), => further, color where is True with black for example
+ msk = msk.astype(np.bool)
+
+ Mat[msk] = color # each True in msk means 0 in Mat. msk is like a selector
+ return Mat
+
+
+def sqrmask1(Mat, maskfile):
+ # ---------- SQUARE MASK 1st approach ----------
+ # print( timeit( lambda:sqrmask1(img, epimask), number=1000 ) ) # 0.48110522600000005
+ # return new Mat
+ xmin, ymin, xmax, ymax = minmax(maskfile)
+ # print("xmin, ymin, xmax, ymax", xmin, ymin, xmax, ymax)
+
+ i = 0
+ while i < ymin:# search by top
+ Mat[i].fill(0)# paint the row in black
+ i += 1
+
+ i = len(Mat) - 1
+ while i > ymax:# search by bottom
+ Mat[i].fill(0)# paint the row in black
+ i -= 1
+
+ i = 0
+ while i < xmin:# search by top
+ Mat.T[i, ymin:ymax+1].fill(0) # paint the column (row of the Transpose) in black, ymin and ymax to optimize, cause, I previously painted a part
+ i += 1
+
+ i = len(Mat.T) - 1
+ while i > xmax:# search by bottom
+ Mat.T[i, ymin:ymax+1].fill(0) # paint the column (row of the Transpose) in black, ymin and ymax to optimize, cause, I previously painted a part
+ i -= 1
+
+ return Mat
+
+def sqrmask2(Mat, maskfile):
+ # ---------- SQUARE MASK 2nd and best approach ----------
+ # print( timeit( lambda:sqrmask2(img, epimask), number=1000 ) ) # 0.3097705270000001
+ # return new Mat
+ xmin, ymin, xmax, ymax = minmax(maskfile)
+ # print("xmin, ymin, xmax, ymax", xmin, ymin, xmax, ymax)
+
+ msk = np.ones(Mat.shape, dtype=np.int32) # init all the mask with True...
+ msk = msk.astype(np.bool)
+
+ msk[ymin:ymax, xmin:xmax] = False # for after, don't touch between min and max region
+ Mat[msk] = 0
+
+ return Mat
+
def map16(array):# can be useful in future
return array * 16
def getdir(filepath):
return '/'.join(filepath.split('/')[:-1]) + '/'
-def topng(inputfile, outfile=None, overwrite=True, verbose=False):
+def readpng(inputfile):# just a specific func to preview a "shape = (X,Y,3)" image
+ image = misc.imread(inputfile)
+
+ print("image")
+ print("image.shape", image.shape)
+
+ for tab in image:
+ for i, row in enumerate(tab):
+ print(row[0]*65536 + row[0]*256 + row[0], end=" " if i % image.shape[0] != 0 else "\n")
+
+def topng(inputfile, outfile=None, overwrite=True, verbose=False, epimask='', endomask='', centercrop=None, blackmask=False, square=False, redcontour=False):
"""
(verbose) return (64, 64) : the width and height
(not verbose) return (img, dicimg) : the image and the dicimg objects
+ centercrop : it's a size (45, 45), to mention I want to crop by center of epimask and by size.
+ blackmask : draw the outside with black
+
"""
try:
dicimg = pydicom.read_file(inputfile) # read dicom image
except pydicom.errors.InvalidDicomError as e:
# @TODO: log, i can't read this file
return
- img = trim(dicimg.pixel_array)# get image array (12bits)
+ # img = trim(dicimg.pixel_array)# get image array (12bits), Don't trim FOR THE MOMENT
+ img = dicimg.pixel_array# get image array (12bits)
# test <<
# return img.shape # $$ COMMENT OR REMOVE THIS LINE
# affine transfo to png 16 bits, func affects img variable
maxdepth = pow(2, dicimg.BitsStored) - 1
- print('dicimg.BitsStored, (img.min(), img.max())', dicimg.BitsStored, (img.min(), img.max())) # testing..
+ # print('dicimg.BitsStored, (img.min(), img.max())', dicimg.BitsStored, (img.min(), img.max())) # testing..
+ if int(dicimg.BitsStored) < 12:
+ print("\n\n\n-----{} Bits-----\n\n\n\n".format(dicimg.BitsStored))
affine(img,
(0, maxdepth), # img.min() replace 0 may be, but not sure it would be good choice
(0, PNG16_MAX if maxdepth > PNG8_MAX else PNG8_MAX)
)
- mask(img, '/Users/user/Desktop/Master/Stage/Data/json/json_GT/0_Case_0002/contours/1.2.3.4.5.6/31/-85.9968/Epicardic.json')
+ # test <<
+ # imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
+ # ret,thresh = cv2.threshold(img,127,255,0)
+ # im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
+ # print("im2, contours, hierarchy", im2, contours, hierarchy)
+ # test >>
+
+ # return img
+
+ # print("log: epimask", epimask)
+
+ if epimask:
+ if redcontour:
+
+ contours = [epimask] # list of list of coords
+ if endomask:contours.append(endomask)
+ img = contour(img, contours, color=RED_COLOR, thickness=1)
+
+ if blackmask:# if is there a mask => apply
+ if square:
+ img = sqrmask2(img, epimask)
+ else:
+ if endomask:
+ img = hollowmask(img, epimask, endomask)
+ else:
+ img = mask(img, epimask)
+
+ if centercrop:
+ img = crop(img, epimask, centercrop)
+
+
+ # return
+ # test
+ # if verbose:
+ # return img, dicimg, minmax(epimask)
+ # else:
+ # return img.shape
savepath = (outfile or inputfile) + '.png'
savedir = getdir(savepath)
# np.savetxt(savepath + '.npy', img)
# test >>
- cv2.imwrite(savepath, img, [cv2.IMWRITE_PNG_COMPRESSION, 0]) # write png image
+ if np.count_nonzero(img) > 0: # matrix not full of zero
+ cv2.imwrite(savepath, img, [cv2.IMWRITE_PNG_COMPRESSION, 0]) # write png image
+
+ # print("ndimage.imread(savepath)", ndimage.imread(savepath).shape)
+ # print( ndimage.imread(savepath) )
+ # print("np.expand_dims(ndimage.imread(savepath), 0)", np.expand_dims(ndimage.imread(savepath), 0).shape)
+ # print(np.expand_dims(ndimage.imread(savepath), 0))
# test
if verbose:
- return img, dicimg
+ return img, dicimg, minmax(epimask)
else:
return img.shape
if __name__ == '__main__':
# topngs( INPUT_DIR, join(OUT_DIR, INPUT_DIR.split('/')[-2]) )
- topng(INPUT_DIR+'Image00003', OUT_DIR + INPUT_DIR.split('/')[-2] +'-Image00003')
+ readpng(OUT_DIR+'aug_circle.png')
+ # topng(INPUT_DIR+'Image00003', OUT_DIR + INPUT_DIR.split('/')[-2] +'-Image00003', epimask="/Users/user/Desktop/Master/Stage/Data/json/json_GT/0_Case_0002/contours/1.2.3.4.5.6/31/-85.9968/Epicardic.json")
from os import listdir as ls
-from os.path import join
-from shutil import move as mv
+from os.path import join, splitext
+from shutil import move as mv, copyfile as cp
import pathlib
-def move(indir, outdir, n):# move n ordered files from indir to outdir
+def move(indir, outdir, n, distinction_word='', copy=True):# move n ordered files from indir to outdir
l = sorted(ls(indir))
for filename in l[:n]:
# print(join(indir, filename), join(outdir, filename))
pathlib.Path(outdir).mkdir(parents=True, exist_ok=True)
- mv(join(indir, filename), join(outdir, filename))
+ fname, fextension = splitext(filename)
+ action = cp if copy else mv
+ action(join(indir, filename), join(outdir, fname + distinction_word + fextension)) # distinction_word='-mask'; /path/file.jpg => /path/file-mask.jpg
if __name__ == '__main__':
- move('./train/infarctus', './sample/train/infarctus', 1000) # move 1000 ordered files from param 1 to param 2
- move('./train/noinfarctus', './sample/train/noinfarctus', 1000)
- move('./train/infarctus', './sample/valid/infarctus', 300)
- move('./train/noinfarctus', './sample/valid/noinfarctus', 300)
\ No newline at end of file
+ move('./generated/90/infarctus/crop-nomask', './sample/train/infarctus', 400, distinction_word="-crop-nomask") # move 400 ordered files from param 1 to param 2
+ move('./generated/90/noinfarctus/crop-nomask', './sample/train/noinfarctus', 400, distinction_word="-crop-nomask")
+ move('./generated/90/infarctus/crop-nomask', './sample/valid/infarctus', 100, distinction_word="-crop-nomask")
+ move('./generated/90/noinfarctus/crop-nomask', './sample/valid/noinfarctus', 100, distinction_word="-crop-nomask")
\ No newline at end of file
from os.path import join
# locals
-from topng import topng, mask
-from regularjson import search, RT_PATH, JSON_GTS, INFA_STR, EPI_STR
+from topng import topng, mask, CROP_SIZE
+from regularjson import search, RT_PATH, JSON_GTS, INFA_STR, EPI_STR, ENDO_STR
# constants
GLOB_DIR = '../../Data/Images_anonymous/'
-OUT_DIR = './generated/train/'
+OUT_DIR = './generated/90/'
INDICE_CASE = 'Case'
START = None # to manage the number of Patient Case to use in training + validation, if START == None => 0, if END == None => last index, it will use all in GLOB_DIR
for i, dic in enumerate(l1):
# print('join', r, l2[i])
- ref = join(r, l2[i]) # logically, should be the json ref of i dicom image
+ ref = join(r, l2[i]) # logically, should be the json ref's "parent directory" of i dicom image
infarctus = search(ref, INFA_STR)
- # epimask = mask(ref, EPI_STR)
+ epimask = search(ref, EPI_STR)
+ endomask = search(ref, ENDO_STR)
+ # print("ref left:", l1[i]) # Testing..
+ # print("ref right:", ref) # Testing..
# print("infarctus:", infarctus) # Testing..
# topng(join(caspath, dic), '%/%-%' % (join(OUT_DIR, 'infarctus'), cas, dic)
- w, h = topng(join(caspath, dic), '{}/{}-{}'.format(join(OUT_DIR, 'infarctus' if infarctus else 'noinfarctus'), cas, dic))
-
- # search maximums
- if wmax < w: wmax = w
- if hmax < h: hmax = h
-
- # search width minimum
- if wmin is None: wmin = w
- elif wmin > w: wmin = w
-
- # search height minimum
- if hmin is None: hmin = h
- elif hmin > h: hmin = h
-
- print('min-width, max-width:', (wmin, wmax))
- print('min-height, max-height:', (hmin, hmax))
-
- print('Ended!')
+ # print('epimask', epimask)
+
+ if epimask:# this condition could be if necessary
+ # w, h = topng(join(caspath, dic), '{}/{}-{}'.format(join(OUT_DIR, 'infarctus' if infarctus else 'noinfarctus'), cas, dic), epimask=epimask['path'] if epimask else None)
+ # img_, dicimg_, minmax_ = topng(join(caspath, dic),
+ # '{}/{}-{}'.format(join(OUT_DIR, 'infarctus' if infarctus else 'noinfarctus'), cas, dic),
+ # epimask=epimask['path'] if epimask else None,
+ # verbose=True,
+ # )
+
+ # Possibly data augmentation purpose here
+ w, h = topng(
+ join(caspath, dic),
+ outfile='{}/crop-mask/{}-{}'.format(join(OUT_DIR,
+ 'infarctus' if infarctus else 'noinfarctus'),
+ cas,
+ dic,
+ ),
+ epimask=epimask['path'] if epimask else None,
+ centercrop=CROP_SIZE,
+ blackmask=True,
+ ) # crop and mask with black
+
+ if endomask:
+ w, h = topng(
+ join(caspath, dic),
+ outfile='{}/crop-mask-hollow/{}-{}'.format(join(OUT_DIR,
+ 'infarctus' if infarctus else 'noinfarctus'),
+ cas,
+ dic,
+ ),
+ epimask=epimask['path'] if epimask else None,
+ endomask=endomask['path'] if endomask else None,
+ centercrop=CROP_SIZE,
+ blackmask=True,
+ ) # crop and (mask and fill hollow) with black
+
+ w, h = topng(
+ join(caspath, dic),
+ outfile='{}/crop-nomask/{}-{}'.format(join(OUT_DIR,
+ 'infarctus' if infarctus else 'noinfarctus'),
+ cas,
+ dic,
+ ),
+ epimask=epimask['path'] if epimask else None,
+ centercrop=CROP_SIZE,
+ ) # just crop, don't apply black mask
+
+ # w, h = topng(
+ # join(caspath, dic),
+ # outfile='{}/contour/{}-{}'.format(join(OUT_DIR,
+ # 'infarctus' if infarctus else 'noinfarctus'),
+ # cas,
+ # dic,
+ # ),
+ # epimask=epimask['path'] if epimask else None,
+ # redcontour=True,
+ # ) # draw a red contour for visibily purpose
+
+ # segmentation width & height <<
+ # xmin, ymin, xmax, ymax = minmax_
+ # w = xmax - xmin + 1 # +1 : even the position takes a bit
+ # h = ymax - ymin + 1
+ # segmentation width & height >>
+
+
+ # # search maximums
+ # if wmax < w: wmax = w
+ # if hmax < h: hmax = h
+
+ # # search width minimum
+ # if wmin is None: wmin = w
+ # elif wmin > w: wmin = w
+
+ # # search height minimum
+ # if hmin is None: hmin = h
+ # elif hmin > h: hmin = h
+
+
+ # print('min-width, max-width:', (wmin, wmax))
+ # print('min-height, max-height:', (hmin, hmax))
+
+ # print('Ended!')