+from configparser import ConfigParser
+from csv import DictReader
+from datetime import datetime, timedelta
from itertools import chain
from logging import getLogger
from logging.config import fileConfig
+from os import listdir
from pathlib import Path
import numpy as np
- Missing datetimes are added first with np.NaN feature values,
- The dataframe is then constructed based on the filled feature dictionary,
- NaN values are then filled with last known values.
-
'''
- def __init__(self, dict_features,
- start, end, timestep,
- features = None):
+
+ def __init__(self, config_file = None, dict_features = None, features = None):
'''
Constructor that defines all needed attributes and collects features.
'''
- logger.info("Entering NaN values in the feature dataframe")
+ self._config = ConfigParser()
+ self._config.read(config_file)
+
+ self._start = datetime.strptime(self._config['DATETIME']['start'],
+ '%m/%d/%Y %H:%M:%S')
+ self._end = datetime.strptime(self._config['DATETIME']['end'],
+ '%m/%d/%Y %H:%M:%S')
+ self._timestep = timedelta(hours =
+ self._config['DATETIME'].getfloat('hourStep'))
self._dict_features = dict_features
- self._start = start
- self._end = end
- self._timestep = timestep
self._full_dict = None
self._dataframe = None
self._datetimes = []
else:
self._features = set(chain.from_iterable([tuple(u.keys())
for u in [*dict_features.values()]]))
+ for csv_file in listdir():
+ with open(csv_file, "r") as f:
+ reader = DictReader(f, delimiter=',')
+ dico_features = {{row['name']: row['type'] # qualitative (2) or quantitative (1)
+ }
+ for row in reader if row['name'] in self._features}
+
+ self._features = {feat : None for feat in self._features}
+ print(self._features)
+ exit()
+
+
+ @property
+ def start(self):
+ return self._start
+
+ @start.setter
+ def start(self, x):
+ self._start = x
+
+
+ @property
+ def end(self):
+ return self._end
+
+ @end.setter
+ def end(self, x):
+ self._end = x
+
+
+ @property
+ def timestep(self):
+ return self._timestep
+
+ @timestep.setter
+ def timestep(self, x):
+ self._timestep = x
def _fill_dict(self):
self._dataframe = pd.DataFrame.from_dict(self.full_dict,
orient='index')
logger.info("Filling NaN values in the feature dataframe")
- #TODO: add other filling methods like linear interpolation
- self._dataframe = self._dataframe.fillna(method='ffill')
- self._dataframe = self._dataframe.fillna(method='bfill')
+
+ if self._config['PREPROCESSING']['fill_method'] == 'propagate':
+ self._dataframe = self._dataframe.fillna(method='ffill')
+ elif self._config['PREPROCESSING']['fill_method'] == 'linear':
+ self._dataframe = self._dataframe.interpolate()
+ elif self._config['PREPROCESSING']['fill_method'] == 'spline':
+ self._dataframe = self._dataframe.interpolate(method='spline',
+ order=self._config['PREPROCESSING'].getint('order'))
+
+ # Uncomment this line to fill NaN values at the beginning of the
+ # dataframe. This may not be a good idea, especially for features
+ # that are available only for recent years, e.g., air quality
+ #self._dataframe = self._dataframe.fillna(method='bfill')
+
self._dataframe = self._dataframe.drop([k.to_pydatetime()
for k in self._dataframe.T
if k not in self._datetimes])
return self._dataframe
+
@dataframe.setter
def dataframe(self, df):
self._dataframe = df