]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Fin de la retouche de la réponse
[prng_gpu.git] / prng_gpu.tex
1 %\documentclass{article}
2 \documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
3 \usepackage[utf8]{inputenc}
4 \usepackage[T1]{fontenc}
5 \usepackage{fullpage}
6 \usepackage{fancybox}
7 \usepackage{amsmath}
8 \usepackage{amscd}
9 \usepackage{moreverb}
10 \usepackage{commath}
11 \usepackage[ruled,vlined]{algorithm2e}
12 \usepackage{listings}
13 \usepackage[standard]{ntheorem}
14 \usepackage{algorithmic}
15 \usepackage{slashbox}
16 \usepackage{ctable}
17 \usepackage{tabularx}
18 \usepackage{multirow}
19
20 % Pour mathds : les ensembles IR, IN, etc.
21 \usepackage{dsfont}
22
23 % Pour avoir des intervalles d'entiers
24 \usepackage{stmaryrd}
25
26 \usepackage{graphicx}
27 % Pour faire des sous-figures dans les figures
28 \usepackage{subfigure}
29
30 \usepackage{color}
31
32 \newtheorem{notation}{Notation}
33
34 \newcommand{\X}{\mathcal{X}}
35 \newcommand{\Go}{G_{f_0}}
36 \newcommand{\B}{\mathds{B}}
37 \newcommand{\N}{\mathds{N}}
38 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
39 \let\sur=\overline
40
41 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
42
43
44 \newcommand{\PCH}[1]{\begin{color}{blue}#1\end{color}}
45
46 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
47 \begin{document}
48
49 \author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
50 Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
51    
52
53 \IEEEcompsoctitleabstractindextext{
54 \begin{abstract}
55 In this paper we present a new pseudorandom number generator (PRNG) on
56 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
57 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
58 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
59 battery of tests in TestU01.  Experiments show that this PRNG can generate
60 about 20 billion of random numbers  per second on Tesla C1060 and NVidia GTX280
61 cards.
62 It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
63 secure.
64 A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.
65
66
67 \end{abstract}
68 }
69
70 \maketitle
71
72 \IEEEdisplaynotcompsoctitleabstractindextext
73 \IEEEpeerreviewmaketitle
74
75
76 \section{Introduction}
77
78 Randomness is of importance in many fields such as scientific simulations or cryptography. 
79 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
80 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
81 process having all the characteristics of a random noise, called a truly random number
82 generator (TRNG). 
83 In this paper, we focus on reproducible generators, useful for instance in
84 Monte-Carlo based simulators or in several cryptographic schemes.
85 These domains need PRNGs that are statistically irreproachable. 
86 In some fields such as in numerical simulations, speed is a strong requirement
87 that is usually attained by using parallel architectures. In that case,
88 a recurrent problem is that a deflation of the statistical qualities is often
89 reported, when the parallelization of a good PRNG is realized.
90 This is why ad-hoc PRNGs for each possible architecture must be found to
91 achieve both speed and randomness.
92 On the other side, speed is not the main requirement in cryptography: the great
93 need is to define \emph{secure} generators able to withstand malicious
94 attacks. Roughly speaking, an attacker should not be able in practice to make 
95 the distinction between numbers obtained with the secure generator and a true random
96 sequence. \begin{color}{red} Or, in an equivalent formulation, he or she should not be
97 able (in practice) to predict the next bit of the generator, having the knowledge of all the 
98 binary digits that have been already released. ``Being able in practice'' refers here
99 to the possibility to achieve this attack in polynomial time, and to the exponential growth
100 of the difficulty of this challenge when the size of the parameters of the PRNG increases.
101 \end{color}
102
103 Finally, a small part of the community working in this domain focuses on a
104 third requirement, that is to define chaotic generators.
105 The main idea is to take benefits from a chaotic dynamical system to obtain a
106 generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic.
107 Their desire is to map a given chaotic dynamics into a sequence that seems random 
108 and unassailable due to chaos.
109 However, the chaotic maps used as a pattern are defined in the real line 
110 whereas computers deal with finite precision numbers.
111 This distortion leads to a deflation of both chaotic properties and speed.
112 Furthermore, authors of such chaotic generators often claim their PRNG
113 as secure due to their chaos properties, but there is no obvious relation
114 between chaos and security as it is understood in cryptography.
115 This is why the use of chaos for PRNG still remains marginal and disputable.
116
117 The authors' opinion is that topological properties of disorder, as they are
118 properly defined in the mathematical theory of chaos, can reinforce the quality
119 of a PRNG. But they are not substitutable for security or statistical perfection.
120 Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
121 one hand, a post-treatment based on a chaotic dynamical system can be applied
122 to a PRNG statistically deflective, in order to improve its statistical 
123 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
124 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
125 cryptographically secure one, in case where chaos can be of interest,
126 \emph{only if these last properties are not lost during
127 the proposed post-treatment}. Such an assumption is behind this research work.
128 It leads to the attempts to define a 
129 family of PRNGs that are chaotic while being fast and statistically perfect,
130 or cryptographically secure.
131 Let us finish this paragraph by noticing that, in this paper, 
132 statistical perfection refers to the ability to pass the whole 
133 {\it BigCrush} battery of tests, which is widely considered as the most
134 stringent statistical evaluation of a sequence claimed as random.
135 This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
136 \begin{color}{red}
137 More precisely, each time we performed a test on a PRNG, we ran it
138 twice in order to observe if all $p-$values are inside [0.01, 0.99]. In
139 fact, we observed that few $p-$values (less than ten) are sometimes
140 outside this interval but inside [0.001, 0.999], so that is why a
141 second run allows us to confirm that the values outside are not for
142 the same test. With this approach all our PRNGs pass the {\it
143   BigCrush} successfully and all $p-$values are at least once inside
144 [0.01, 0.99].
145 \end{color}
146 Chaos, for its part, refers to the well-established definition of a
147 chaotic dynamical system proposed by Devaney~\cite{Devaney}.
148
149 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
150 as a chaotic dynamical system. Such a post-treatment leads to a new category of
151 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
152 family, and that the sequence obtained after this post-treatment can pass the
153 NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
154 cannot.
155 The proposition of this paper is to improve widely the speed of the formerly
156 proposed generator, without any lack of chaos or statistical properties.
157 In particular, a version of this PRNG on graphics processing units (GPU)
158 is proposed.
159 Although GPU was initially designed  to accelerate
160 the manipulation of  images, they are nowadays commonly  used in many scientific
161 applications. Therefore,  it is important  to be able to  generate pseudorandom
162 numbers inside a GPU when a scientific application runs in it. This remark
163 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
164 Such device
165 allows us to generate almost 20 billion of pseudorandom numbers per second.
166 Furthermore, we show that the proposed post-treatment preserves the
167 cryptographical security of the inputted PRNG, when this last has such a 
168 property.
169 Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
170 key encryption protocol by using the proposed method.
171
172
173 \PCH{
174 {\bf Main contributions.} In this paper a new PRNG using chaotic iteration
175 is defined. From a theoretical point of view, it is proven that it has fine
176 topological chaotic properties and that it is cryptographically secured (when
177 the based PRNG is also cryptographically secured). From a practical point of
178 view, experiments point out a very good statistical behavior. Optimized
179 original implementation of this PRNG are also proposed and experimented.
180 Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster
181 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
182 statistical behavior). Experiments are also provided using BBS as the based
183 random generator. The generation speed is significantly weaker but, as far
184 as we know, it is the first cryptographically secured PRNG proposed on GPU.
185 Note too that an original qualitative comparison between topological chaotic
186 properties and statistical test is also proposed.
187 }
188
189
190
191 The remainder of this paper  is organized as follows. In Section~\ref{section:related
192   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
193   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
194   and on an iteration process called ``chaotic
195 iterations'' on which the post-treatment is based. 
196 The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
197 \begin{color}{red}
198 Section~\ref{The generation of pseudorandom sequence} illustrates the statistical
199 improvement related to the chaotic iteration based post-treatment, for
200 our previously released PRNGs and a new efficient 
201 implementation on CPU.
202 \end{color}
203  Section~\ref{sec:efficient PRNG
204   gpu}   describes and evaluates theoretically  the  GPU   implementation. 
205 Such generators are experimented in 
206 Section~\ref{sec:experiments}.
207 We show in Section~\ref{sec:security analysis} that, if the inputted
208 generator is cryptographically secure, then it is the case too for the
209 generator provided by the post-treatment.
210 \begin{color}{red} A practical
211 security evaluation is also outlined in Section~\ref{sec:Practicak evaluation}.\end{color}
212 Such a proof leads to the proposition of a cryptographically secure and
213 chaotic generator on GPU based on the famous Blum Blum Shub
214 in Section~\ref{sec:CSGPU} and to an improvement of the
215 Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
216 This research work ends by a conclusion section, in which the contribution is
217 summarized and intended future work is presented.
218
219
220
221
222 \section{Related work on GPU based PRNGs}
223 \label{section:related works}
224
225 Numerous research works on defining GPU based PRNGs have already been proposed  in the
226 literature, so that exhaustivity is impossible.
227 This is why authors of this document only give reference to the most significant attempts 
228 in this domain, from their subjective point of view. 
229 The  quantity of pseudorandom numbers generated per second is mentioned here 
230 only when the information is given in the related work. 
231 A million numbers  per second will be simply written as
232 1MSample/s whereas a billion numbers per second is 1GSample/s.
233
234 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
235 with no  requirement to an high  precision  integer   arithmetic  or to any bitwise
236 operations. Authors can   generate  about
237 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
238 However, there is neither a mention of statistical tests nor any proof of
239 chaos or cryptography in this document.
240
241 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
242 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
243 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
244 GPU. Performances of  the GPU versions are far better than  those obtained with a
245 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
246 However the evaluations of the proposed PRNGs are only statistical ones.
247
248
249 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
250 PRNGs on  different computing architectures: CPU,  field-programmable gate array
251 (FPGA), massively parallel  processors, and GPU. This study is of interest, because
252 the  performance  of the  same  PRNGs on  different architectures are compared. 
253 FPGA appears as  the  fastest  and the most
254 efficient architecture, providing the fastest number of generated pseudorandom numbers
255 per joule. 
256 However, we notice that authors can ``only'' generate between 11 and 16GSamples/s
257 with a GTX 280  GPU, which should be compared with
258 the results presented in this document.
259 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
260 able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
261
262 Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
263 Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
264 other things 
265 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
266 their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
267 But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
268 \newline
269 \newline
270 We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
271
272 \section{Basic Recalls}
273 \label{section:BASIC RECALLS}
274
275 This section is devoted to basic definitions and terminologies in the fields of
276 topological chaos and chaotic iterations. We assume the reader is familiar
277 with basic notions on topology (see for instance~\cite{Devaney}).
278
279
280 \subsection{Devaney's Chaotic Dynamical Systems}
281 \label{subsec:Devaney}
282 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
283 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
284 is for the $k^{th}$ composition of a function $f$. Finally, the following
285 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
286
287
288 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
289 \mathcal{X} \rightarrow \mathcal{X}$.
290
291 \begin{definition}
292 The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
293 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
294 \varnothing$.
295 \end{definition}
296
297 \begin{definition}
298 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
299 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
300 \end{definition}
301
302 \begin{definition}
303 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
304 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
305 any neighborhood of $x$ contains at least one periodic point (without
306 necessarily the same period).
307 \end{definition}
308
309
310 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
311 The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
312 topologically transitive.
313 \end{definition}
314
315 The chaos property is strongly linked to the notion of ``sensitivity'', defined
316 on a metric space $(\mathcal{X},d)$ by:
317
318 \begin{definition}
319 \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
320 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
321 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
322 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
323
324 The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
325 \end{definition}
326
327 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
328 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
329 sensitive dependence on initial conditions (this property was formerly an
330 element of the definition of chaos). To sum up, quoting Devaney
331 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
332 sensitive dependence on initial conditions. It cannot be broken down or
333 simplified into two subsystems which do not interact because of topological
334 transitivity. And in the midst of this random behavior, we nevertheless have an
335 element of regularity''. Fundamentally different behaviors are consequently
336 possible and occur in an unpredictable way.
337
338
339
340 \subsection{Chaotic Iterations}
341 \label{sec:chaotic iterations}
342
343
344 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
345 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
346 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
347  cells  leads to the definition of a particular \emph{state  of the
348 system}. A sequence which  elements belong to $\llbracket 1;\mathsf{N}
349 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
350 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
351
352 \begin{definition}
353 \label{Def:chaotic iterations}
354 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
355 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
356 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
357 \emph{chaotic      iterations}     are     defined      by     $x^0\in
358 \mathds{B}^{\mathsf{N}}$ and
359 \begin{equation}
360 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
361 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
362 \begin{array}{ll}
363   x_i^{n-1} &  \text{ if  }S^n\neq i \\
364   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
365 \end{array}\right.
366 \end{equation}
367 \end{definition}
368
369 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
370 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
371 general  formulation,  $S^n$  can   be  a  subset  of  components  and
372 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
373 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
374 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
375 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
376 priori} no link with the mathematical theory of chaos, presented above.
377
378
379 Let us now recall how to define a suitable metric space where chaotic iterations
380 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
381
382 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
383 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
384 $F_{f}:  \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} 
385 \longrightarrow  \mathds{B}^{\mathsf{N}}$
386 \begin{equation*}
387 \begin{array}{lrll}
388 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
389 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
390 \end{array}%
391 \end{equation*}%
392 \noindent where + and . are the Boolean addition and product operations.
393 Consider the phase space:
394 \begin{equation}
395 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
396 \mathds{B}^\mathsf{N},
397 \end{equation}
398 \noindent and the map defined on $\mathcal{X}$:
399 \begin{equation}
400 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
401 \end{equation}
402 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
403 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
404 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
405 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
406 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
407 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
408 \begin{equation}
409 \left\{
410 \begin{array}{l}
411 X^0 \in \mathcal{X} \\
412 X^{k+1}=G_{f}(X^k).%
413 \end{array}%
414 \right.
415 \end{equation}%
416
417 With this formulation, a shift function appears as a component of chaotic
418 iterations. The shift function is a famous example of a chaotic
419 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
420 chaotic. 
421 To study this claim, a new distance between two points $X = (S,E), Y =
422 (\check{S},\check{E})\in
423 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
424 \begin{equation}
425 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
426 \end{equation}
427 \noindent where
428 \begin{equation}
429 \left\{
430 \begin{array}{lll}
431 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
432 }\delta (E_{k},\check{E}_{k})}, \\
433 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
434 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
435 \end{array}%
436 \right.
437 \end{equation}
438
439
440 This new distance has been introduced to satisfy the following requirements.
441 \begin{itemize}
442 \item When the number of different cells between two systems is increasing, then
443 their distance should increase too.
444 \item In addition, if two systems present the same cells and their respective
445 strategies start with the same terms, then the distance between these two points
446 must be small because the evolution of the two systems will be the same for a
447 while. Indeed, both dynamical systems start with the same initial condition,
448 use the same update function, and as strategies are the same for a while, furthermore
449 updated components are the same as well.
450 \end{itemize}
451 The distance presented above follows these recommendations. Indeed, if the floor
452 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
453 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
454 measure of the differences between strategies $S$ and $\check{S}$. More
455 precisely, this floating part is less than $10^{-k}$ if and only if the first
456 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
457 nonzero, then the $k^{th}$ terms of the two strategies are different.
458 The impact of this choice for a distance will be investigated at the end of the document.
459
460 Finally, it has been established in \cite{guyeux10} that,
461
462 \begin{proposition}
463 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
464 the metric space $(\mathcal{X},d)$.
465 \end{proposition}
466
467 The chaotic property of $G_f$ has been firstly established for the vectorial
468 Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
469 introduced the notion of asynchronous iteration graph recalled bellow.
470
471 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
472 {\emph{asynchronous iteration graph}} associated with $f$ is the
473 directed graph $\Gamma(f)$ defined by: the set of vertices is
474 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
475 $i\in \llbracket1;\mathsf{N}\rrbracket$,
476 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
477 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
478 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
479 strategy $s$ such that the parallel iteration of $G_f$ from the
480 initial point $(s,x)$ reaches the point $x'$.
481 We have then proven in \cite{bcgr11:ip} that,
482
483
484 \begin{theorem}
485 \label{Th:Caractérisation   des   IC   chaotiques}  
486 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
487 if and only if $\Gamma(f)$ is strongly connected.
488 \end{theorem}
489
490 Finally, we have established in \cite{bcgr11:ip} that,
491 \begin{theorem}
492   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
493   iteration graph, $\check{M}$ its adjacency
494   matrix and $M$
495   a $n\times n$ matrix defined by 
496   $
497   M_{ij} = \frac{1}{n}\check{M}_{ij}$ %\textrm{ 
498   if $i \neq j$ and  
499   $M_{ii} = 1 - \frac{1}{n} \sum\limits_{j=1, j\neq i}^n \check{M}_{ij}$ otherwise.
500   
501   If $\Gamma(f)$ is strongly connected, then 
502   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
503   a law that tends to the uniform distribution 
504   if and only if $M$ is a double stochastic matrix.
505 \end{theorem} 
506
507
508 These results of chaos and uniform distribution have led us to study the possibility of building a
509 pseudorandom number generator (PRNG) based on the chaotic iterations. 
510 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
511 \times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
512 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
513 during implementations (due to the discrete nature of $f$). Indeed, it is as if
514 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
515 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
516 Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
517
518 \section{Application to Pseudorandomness}
519 \label{sec:pseudorandom}
520
521 \subsection{A First Pseudorandom Number Generator}
522
523 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
524 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
525 leading thus to a new PRNG that 
526 \begin{color}{red}
527 should improve the statistical properties of each
528 generator taken alone. 
529 Furthermore, the generator obtained by this way possesses various chaos properties that none of the generators used as input
530 present.
531
532
533
534 \begin{algorithm}[h!]
535 \begin{small}
536 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
537 ($n$ bits)}
538 \KwOut{a configuration $x$ ($n$ bits)}
539 $x\leftarrow x^0$\;
540 $k\leftarrow b + PRNG_1(b)$\;
541 \For{$i=0,\dots,k$}
542 {
543 $s\leftarrow{PRNG_2(n)}$\;
544 $x\leftarrow{F_f(s,x)}$\;
545 }
546 return $x$\;
547 \end{small}
548 \caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$}
549 \label{CI Algorithm}
550 \end{algorithm}
551
552
553
554
555 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
556 It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques};
557 an integer $b$, ensuring that the number of executed iterations
558 between two outputs is at least $b$
559 and at most $2b+1$; and an initial configuration $x^0$.
560 It returns the new generated configuration $x$.  Internally, it embeds two
561 inputted generators $PRNG_i(k), i=1,2$,
562  which must return integers
563 uniformly distributed
564 into $\llbracket 1 ; k \rrbracket$.
565 For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003},
566 being a category of very fast PRNGs designed by George Marsaglia
567 that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
568 with a bit shifted version of it. Such a PRNG, which has a period of
569 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. 
570 This XORshift, or any other reasonable PRNG, is used
571 in our own generator to compute both the number of iterations between two
572 outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$).
573
574 %This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
575
576
577 \begin{algorithm}[h!]
578 \begin{small}
579 \KwIn{the internal configuration $z$ (a 32-bit word)}
580 \KwOut{$y$ (a 32-bit word)}
581 $z\leftarrow{z\oplus{(z\ll13)}}$\;
582 $z\leftarrow{z\oplus{(z\gg17)}}$\;
583 $z\leftarrow{z\oplus{(z\ll5)}}$\;
584 $y\leftarrow{z}$\;
585 return $y$\;
586 \end{small}
587 \caption{An arbitrary round of \textit{XORshift} algorithm}
588 \label{XORshift}
589 \end{algorithm}
590
591
592 \subsection{A ``New CI PRNG''}
593
594 In order to make the Old CI PRNG usable in practice, we have proposed 
595 an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}.
596 In this ``New CI PRNG'', we prevent from changing twice a given
597 bit between two outputs.
598 This new generator is designed by the following process. 
599
600 First of all, some chaotic iterations have to be done to generate a sequence 
601 $\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ 
602 of Boolean vectors, which are the successive states of the iterated system. 
603 Some of these vectors will be randomly extracted and our pseudorandom bit 
604 flow will be constituted by their components. Such chaotic iterations are 
605 realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean 
606 vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in 
607 \llbracket 1, 32 \rrbracket^\mathds{N}$ is
608 an \emph{irregular decimation} of $PRNG_2$ sequence, as described in 
609 Algorithm~\ref{Chaotic iteration1}.
610
611 Then, at each iteration, only the $S^n$-th component of state $x^n$ is 
612 updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$.
613 Such a procedure is equivalent to achieve chaotic iterations with
614 the Boolean vectorial negation $f_0$ and some well-chosen strategies.
615 Finally, some $x^n$ are selected
616 by a sequence $m^n$ as the pseudorandom bit sequence of our generator.
617 $(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers.
618
619 The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}.
620 The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input
621 PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}.
622 This function must be chosen such that the outputs of the resulted PRNG are uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$. Function of \eqref{Formula} achieves this
623 goal (other candidates and more information can be found in ~\cite{bg10:ip}).
624
625 \begin{equation}
626 \label{Formula}
627 m^n = g(y^n)=
628 \left\{
629 \begin{array}{l}
630 0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\
631 1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\
632 2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\
633 \vdots~~~~~ ~~\vdots~~~ ~~~~\\
634 N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\
635 \end{array}
636 \right.
637 \end{equation}
638
639 \begin{algorithm}
640 \textbf{Input:} the internal state $x$ (32 bits)\\
641 \textbf{Output:} a state $r$ of 32 bits
642 \begin{algorithmic}[1]
643 \FOR{$i=0,\dots,N$}
644 {
645 \STATE$d_i\leftarrow{0}$\;
646 }
647 \ENDFOR
648 \STATE$a\leftarrow{PRNG_1()}$\;
649 \STATE$k\leftarrow{g(a)}$\;
650 \WHILE{$i=0,\dots,k$}
651
652 \STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\;
653 \STATE$S\leftarrow{b}$\;
654     \IF{$d_S=0$}
655     {
656 \STATE      $x_S\leftarrow{ \overline{x_S}}$\;
657 \STATE      $d_S\leftarrow{1}$\;
658
659     }
660     \ELSIF{$d_S=1$}
661     {
662 \STATE      $k\leftarrow{ k+1}$\;
663     }\ENDIF
664 \ENDWHILE\\
665 \STATE $r\leftarrow{x}$\;
666 \STATE return $r$\;
667 \medskip
668 \caption{An arbitrary round of the new CI generator}
669 \label{Chaotic iteration1}
670 \end{algorithmic}
671 \end{algorithm}
672 \end{color}
673
674 \subsection{Improving the Speed of the Former Generator}
675
676 Instead of updating only one cell at each iteration, \begin{color}{red} we now propose to choose a
677 subset of components and to update them together, for speed improvements. Such a proposition leads \end{color}
678 to a kind of merger of the two sequences used in Algorithms 
679 \ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation,
680 this algorithm can be rewritten as follows:
681
682 \begin{equation}
683 \left\{
684 \begin{array}{l}
685 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
686 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
687 \end{array}
688 \right.
689 \label{equation Oplus}
690 \end{equation}
691 where $\oplus$ is for the bitwise exclusive or between two integers. 
692 This rewriting can be understood as follows. The $n-$th term $S^n$ of the
693 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
694 the list of cells to update in the state $x^n$ of the system (represented
695 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
696 component of this state (a binary digit) changes if and only if the $k-$th 
697 digit in the binary decomposition of $S^n$ is 1.
698
699 The single basic component presented in Eq.~\ref{equation Oplus} is of 
700 ordinary use as a good elementary brick in various PRNGs. It corresponds
701 to the following discrete dynamical system in chaotic iterations:
702
703 \begin{equation}
704 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
705 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
706 \begin{array}{ll}
707   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
708   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
709 \end{array}\right.
710 \label{eq:generalIC}
711 \end{equation}
712 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
713 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
714 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
715 decomposition of $S^n$ is 1. Such chaotic iterations are more general
716 than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
717 we select a subset of components to change.
718
719
720 Obviously, replacing the previous CI PRNG Algorithms by 
721 Equation~\ref{equation Oplus}, which is possible when the iteration function is
722 the vectorial negation, leads to a speed improvement 
723 (the resulting generator will be referred as ``Xor CI PRNG''
724 in what follows).
725 However, proofs
726 of chaos obtained in~\cite{bg10:ij} have been established
727 only for chaotic iterations of the form presented in Definition 
728 \ref{Def:chaotic iterations}. The question is now to determine whether the
729 use of more general chaotic iterations to generate pseudorandom numbers 
730 faster, does not deflate their topological chaos properties.
731
732 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
733 \label{deuxième def}
734 Let us consider the discrete dynamical systems in chaotic iterations having 
735 the general form: $\forall    n\in     \mathds{N}^{\ast     }$, $  \forall     i\in
736 \llbracket1;\mathsf{N}\rrbracket $,
737
738 \begin{equation}
739   x_i^n=\left\{
740 \begin{array}{ll}
741   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
742   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
743 \end{array}\right.
744 \label{general CIs}
745 \end{equation}
746
747 In other words, at the $n^{th}$ iteration, only the cells whose id is
748 contained into the set $S^{n}$ are iterated.
749
750 Let us now rewrite these general chaotic iterations as usual discrete dynamical
751 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
752 is required in order to study the topological behavior of the system.
753
754 Let us introduce the following function:
755 \begin{equation}
756 \begin{array}{cccc}
757  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
758          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
759 \end{array} 
760 \end{equation}
761 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
762
763 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
764 $F_{f}:  \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} 
765 \longrightarrow \mathds{B}^{\mathsf{N}}$
766 \begin{equation*}
767 \begin{array}{rll}
768  (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
769 \end{array}%
770 \end{equation*}%
771 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
772 is the negation of the Boolean $x$.
773 Consider the phase space:
774 \begin{equation}
775 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
776 \mathds{B}^\mathsf{N},
777 \end{equation}
778 \noindent and the map defined on $\mathcal{X}$:
779 \begin{equation}
780 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
781 \end{equation}
782 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
783 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
784 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
785 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
786 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
787 be described by the following discrete dynamical system:
788 \begin{equation}
789 \left\{
790 \begin{array}{l}
791 X^0 \in \mathcal{X} \\
792 X^{k+1}=G_{f}(X^k).%
793 \end{array}%
794 \right.
795 \end{equation}%
796
797 Once more, a shift function appears as a component of these general chaotic 
798 iterations. 
799
800 To study the Devaney's chaos property, a distance between two points 
801 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
802 Let us introduce:
803 \begin{equation}
804 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
805 \label{nouveau d}
806 \end{equation}
807 \noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
808  }\delta (E_{k},\check{E}_{k})}$  is once more the Hamming distance, and
809 $  \displaystyle{d_{s}(S,\check{S})}  =  \displaystyle{\dfrac{9}{\mathsf{N}}%
810  \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
811 %%RAPH : ici, j'ai supprimé tous les sauts à la ligne
812 %% \begin{equation}
813 %% \left\{
814 %% \begin{array}{lll}
815 %% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
816 %% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
817 %% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
818 %% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
819 %% \end{array}%
820 %% \right.
821 %% \end{equation}
822 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
823 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
824
825
826 \begin{proposition}
827 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
828 \end{proposition}
829
830 \begin{proof}
831  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
832 too, thus $d$, as being the sum of two distances, will also be a distance.
833  \begin{itemize}
834 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
835 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
836 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
837  \item $d_s$ is symmetric 
838 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
839 of the symmetric difference. 
840 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
841 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
842 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
843 inequality is obtained.
844  \end{itemize}
845 \end{proof}
846
847
848 Before being able to study the topological behavior of the general 
849 chaotic iterations, we must first establish that:
850
851 \begin{proposition}
852  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
853 $\left( \mathcal{X},d\right)$.
854 \end{proposition}
855
856
857 \begin{proof}
858 We use the sequential continuity.
859 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
860 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
861 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
862 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
863 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
864 sequences).\newline
865 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
866 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
867 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
868 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
869 cell will change its state:
870 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
871
872 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
873 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
874 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
875 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
876
877 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
878 identical and strategies $S^n$ and $S$ start with the same first term.\newline
879 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
880 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
881 \noindent We now prove that the distance between $\left(
882 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
883 0. Let $\varepsilon >0$. \medskip
884 \begin{itemize}
885 \item If $\varepsilon \geqslant 1$, we see that the distance
886 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
887 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
888 \medskip
889 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
890 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
891 \begin{equation*}
892 \exists n_{2}\in \mathds{N},\forall n\geqslant
893 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
894 \end{equation*}%
895 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
896 \end{itemize}
897 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
898 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
899 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
900 10^{-(k+1)}\leqslant \varepsilon $.
901
902 In conclusion,
903 %%RAPH : ici j'ai rajouté une ligne
904 %%TOF : ici j'ai rajouté un commentaire
905 %%TOF : ici aussi
906 $
907 \forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
908 ,$ $\forall n\geqslant N_{0},$
909 $ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
910 \leqslant \varepsilon .
911 $
912 $G_{f}$ is consequently continuous.
913 \end{proof}
914
915
916 It is now possible to study the topological behavior of the general chaotic
917 iterations. We will prove that,
918
919 \begin{theorem}
920 \label{t:chaos des general}
921  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
922 the Devaney's property of chaos.
923 \end{theorem}
924
925 Let us firstly prove the following lemma.
926
927 \begin{lemma}[Strong transitivity]
928 \label{strongTrans}
929  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
930 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
931 \end{lemma}
932
933 \begin{proof}
934  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
935 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
936 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
937 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
938 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
939 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
940 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
941 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
942 \begin{itemize}
943  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
944  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
945 \end{itemize}
946 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
947 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
948 claimed in the lemma.
949 \end{proof}
950
951 We can now prove the Theorem~\ref{t:chaos des general}.
952
953 \begin{proof}[Theorem~\ref{t:chaos des general}]
954 Firstly, strong transitivity implies transitivity.
955
956 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
957 prove that $G_f$ is regular, it is sufficient to prove that
958 there exists a strategy $\tilde S$ such that the distance between
959 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
960 $(\tilde S,E)$ is a periodic point.
961
962 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
963 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
964 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
965 and $t_2\in\mathds{N}$ such
966 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
967
968 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
969 of $S$ and the first $t_2$ terms of $S'$: 
970 %%RAPH : j'ai coupé la ligne en 2
971 $$\tilde
972 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
973 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
974 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
975 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
976 have $d((S,E),(\tilde S,E))<\epsilon$.
977 \end{proof}
978
979
980 \begin{color}{red}
981 \section{Statistical Improvements Using Chaotic Iterations}
982
983 \label{The generation of pseudorandom sequence}
984
985
986 Let us now explain why we are reasonable grounds to believe that chaos 
987 can improve statistical properties.
988 We will show in this section that chaotic properties as defined in the
989 mathematical theory of chaos are related to some statistical tests that can be found
990 in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with
991 chaotic iterations, the new generator presents better statistical properties
992 (this section summarizes and extends the work of~\cite{bfg12a:ip}).
993
994
995
996 \subsection{Qualitative relations between topological properties and statistical tests}
997
998
999 There are various relations between topological properties that describe an unpredictable behavior for a discrete 
1000 dynamical system on the one
1001 hand, and statistical tests to check the randomness of a numerical sequence
1002 on the other hand. These two mathematical disciplines follow a similar 
1003 objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
1004 recurrent sequence), with two different but complementary approaches.
1005 It is true that the following illustrative links give only qualitative arguments, 
1006 and proofs should be provided later to make such arguments irrefutable. However 
1007 they give a first understanding of the reason why we think that chaotic properties should tend
1008 to improve the statistical quality of PRNGs.
1009 %
1010 Let us now list some of these relations between topological properties defined in the mathematical
1011 theory of chaos and tests embedded into the NIST battery. %Such relations need to be further 
1012 %investigated, but they presently give a first illustration of a trend to search similar properties in the 
1013 %two following fields: mathematical chaos and statistics.
1014
1015
1016 \begin{itemize}
1017     \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must 
1018 have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
1019 a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
1020 is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
1021 knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
1022 the two following NIST tests~\cite{Nist10}:
1023     \begin{itemize}
1024         \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
1025         \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are near each other) in the tested sequence that would indicate a deviation from the assumption of randomness.
1026     \end{itemize}
1027
1028 \item \textbf{Transitivity}. This topological property introduced previously states that the dynamical system is intrinsically complicated: it cannot be simplified into 
1029 two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. 
1030 This focus on the places visited by orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
1031 of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention 
1032 is brought on states visited during a random walk in the two tests below~\cite{Nist10}:
1033     \begin{itemize}
1034         \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
1035         \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
1036     \end{itemize}
1037
1038 \item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillates as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
1039 to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
1040     \begin{itemize}
1041         \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
1042     \end{itemize}
1043     \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
1044 has emerged both in the topological and statistical fields. Another time, a similar objective has led to two different
1045 rewritten of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach, 
1046 whereas topological entropy is defined as follows.
1047 $x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
1048 leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations, 
1049 the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f)  = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
1050 This value measures the average exponential growth of the number of distinguishable orbit segments. 
1051 In this sense, it measures complexity of the topological dynamical system, whereas 
1052 the Shannon approach is in mind when defining the following test~\cite{Nist10}:
1053     \begin{itemize}
1054 \item \textbf{Approximate Entropy Test}. Compare the frequency of overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
1055     \end{itemize}
1056
1057     \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are 
1058 not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
1059     \begin{itemize}
1060 \item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
1061 \item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
1062       \end{itemize}
1063 \end{itemize}
1064
1065
1066 We have proven in our previous works~\cite{guyeux12:bc} that chaotic iterations satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques} are, among other
1067 things, strongly transitive, topologically mixing, chaotic as defined by Li and Yorke,
1068 and that they have a topological entropy and an exponent of Lyapunov both equal to $ln(\mathsf{N})$,
1069 where $\mathsf{N}$ is the size of the iterated vector.
1070 These topological properties make that we are ground to believe that a generator based on chaotic
1071 iterations will probably be able to pass all the existing statistical batteries for pseudorandomness like
1072 the NIST one. The following subsections, in which we prove that defective generators have their
1073 statistical properties improved by chaotic iterations, show that such an assumption is true.
1074
1075 \subsection{Details of some Existing Generators}
1076
1077 The list of defective PRNGs we will use 
1078 as inputs for the statistical tests to come is introduced here.
1079
1080 Firstly, the simple linear congruency generators (LCGs) will be used. 
1081 They are defined by the following recurrence:
1082 \begin{equation}
1083 x^n = (ax^{n-1} + c)~mod~m,
1084 \label{LCG}
1085 \end{equation}
1086 where $a$, $c$, and $x^0$ must be, among other things, non-negative and less than 
1087 $m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer as two (resp. three) 
1088 combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
1089
1090 Secondly, the multiple recursive generators (MRGs) will be used, which
1091 are based on a linear recurrence of order 
1092 $k$, modulo $m$~\cite{LEcuyerS07}:
1093 \begin{equation}
1094 x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m .
1095 \label{MRG}
1096 \end{equation}
1097 Combination of two MRGs (referred as 2MRGs) is also used in these experiments.
1098
1099 Generators based on linear recurrences with carry will be regarded too.
1100 This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
1101 \begin{equation}
1102 \label{AWC}
1103 \begin{array}{l}
1104 x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
1105 c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
1106 the SWB generator, having the recurrence:
1107 \begin{equation}
1108 \label{SWB}
1109 \begin{array}{l}
1110 x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
1111 c^n=\left\{
1112 \begin{array}{l}
1113 1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
1114 0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
1115 and the SWC generator designed by R. Couture, which is based on the following recurrence:
1116 \begin{equation}
1117 \label{SWC}
1118 \begin{array}{l}
1119 x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
1120 c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
1121
1122 Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
1123 \begin{equation}
1124 x^n = x^{n-r} \oplus x^{n-k} .
1125 \label{GFSR}
1126 \end{equation}
1127
1128
1129 Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is:
1130
1131 \begin{equation}
1132 \label{INV}
1133 \begin{array}{l}
1134 x^n=\left\{
1135 \begin{array}{ll}
1136 (a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
1137 a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
1138
1139
1140
1141 \begin{table}
1142 \renewcommand{\arraystretch}{1.3}
1143 \caption{TestU01 Statistical Test}
1144 \label{TestU011}
1145 \centering
1146   \begin{tabular}{lccccc}
1147     \toprule
1148 Test name &Tests& Logistic              & XORshift      & ISAAC\\
1149 Rabbit                          &       38      &21             &14     &0       \\
1150 Alphabit                        &       17      &16             &9      &0       \\
1151 Pseudo DieHARD                  &126    &0              &2      &0      \\
1152 FIPS\_140\_2                    &16     &0              &0      &0      \\
1153 SmallCrush                      &15     &4              &5      &0       \\
1154 Crush                           &144    &95             &57     &0       \\
1155 Big Crush                       &160    &125            &55     &0       \\ \hline
1156 Failures                &       &261            &146    &0       \\
1157 \bottomrule
1158   \end{tabular}
1159 \end{table}
1160
1161
1162
1163 \begin{table}
1164 \renewcommand{\arraystretch}{1.3}
1165 \caption{TestU01 Statistical Test for Old CI algorithms ($\mathsf{N}=4$)}
1166 \label{TestU01 for Old CI}
1167 \centering
1168   \begin{tabular}{lcccc}
1169     \toprule
1170 \multirow{3}*{Test name} & \multicolumn{4}{c}{Old CI}\\
1171 &Logistic& XORshift& ISAAC&ISAAC  \\ 
1172 &+& +& + & + \\ 
1173 &Logistic& XORshift& XORshift&ISAAC  \\ \cmidrule(r){2-5}
1174 Rabbit                                  &7      &2      &0      &0       \\
1175 Alphabit                                & 3     &0      &0      &0       \\
1176 DieHARD                         &0      &0      &0      &0      \\
1177 FIPS\_140\_2                    &0      &0      &0      &0      \\
1178 SmallCrush                              &2      &0      &0      &0       \\
1179 Crush                                   &47     &4      &0      &0       \\
1180 Big Crush                               &79     &3      &0      &0       \\ \hline
1181 Failures                                &138    &9      &0      &0       \\
1182 \bottomrule
1183   \end{tabular}
1184 \end{table}
1185
1186
1187
1188
1189
1190 \subsection{Statistical tests}
1191 \label{Security analysis}
1192
1193 Three batteries of tests are reputed and usually used
1194 to evaluate the statistical properties of newly designed pseudorandom
1195 number generators. These batteries are named DieHard~\cite{Marsaglia1996},
1196 the NIST suite~\cite{ANDREW2008}, and the most stringent one called
1197 TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
1198
1199
1200
1201 \label{Results and discussion}
1202 \begin{table*}
1203 \renewcommand{\arraystretch}{1.3}
1204 \caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
1205 \label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
1206 \centering
1207   \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
1208     \hline\hline
1209 Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1210 \backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
1211 NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
1212 DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
1213 \end{tabular}
1214 \end{table*}
1215
1216 Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
1217 results on the two firsts batteries recalled above, indicating that all the PRNGs presented
1218 in the previous section
1219 cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
1220 fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
1221 iterations can solve this issue.
1222 %More precisely, to
1223 %illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
1224 %\begin{enumerate}
1225 %  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
1226 %  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
1227 %  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
1228 %\begin{equation}
1229 %\begin{array}{l}
1230 %\left\{
1231 %\begin{array}{l}
1232 %x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
1233 %\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
1234 %\end{equation}
1235 %$m$ is called the \emph{functional power}.
1236 %\end{enumerate}
1237 %
1238 The obtained results are reproduced in Table
1239 \ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
1240 The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
1241 asterisk ``*'' means that the considered passing rate has been improved.
1242 The improvements are obvious for both the ``Old CI'' and ``New CI'' generators.
1243 Concerning the ``Xor CI PRNG'', the score is less spectacular: a large speed improvement makes that statistics
1244  are not as good as for the two other versions of these CIPRNGs.
1245 However 8 tests have been improved (with no deflation for the other results).
1246
1247
1248 \begin{table*}
1249 \renewcommand{\arraystretch}{1.3}
1250 \caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
1251 \label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
1252 \centering
1253   \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
1254     \hline
1255 Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1256 \backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
1257 Old CIPRNG\\ \hline \hline
1258 NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1259 DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
1260 New CIPRNG\\ \hline \hline
1261 NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1262 DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
1263 Xor CIPRNG\\ \hline\hline
1264 NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
1265 DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
1266 \end{tabular}
1267 \end{table*}
1268
1269
1270 We have then investigate in~\cite{bfg12a:ip} if it is possible to improve
1271 the statistical behavior of the Xor CI version by combining more than one 
1272 $\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating
1273 the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in.
1274 Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
1275 using chaotic iterations on defective generators.
1276
1277 \begin{table*}
1278 \renewcommand{\arraystretch}{1.3}
1279 \caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
1280 \label{threshold}
1281 \centering
1282   \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
1283     \hline
1284 Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
1285 Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
1286 \end{tabular}
1287 \end{table*}
1288
1289 Finally, the TestU01 battery has been launched on three well-known generators 
1290 (a logistic map, a simple XORshift, and the cryptographically secure ISAAC, 
1291 see Table~\ref{TestU011}). These results can be compared with 
1292 Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the
1293 Old CI PRNG that has received these generators.
1294 The obvious improvement speaks for itself, and together with the other
1295 results recalled in this section, it reinforces the opinion that a strong
1296 correlation between topological properties and statistical behavior exists.
1297
1298
1299 Next subsection will now give a concrete original implementation of the Xor CI PRNG, the
1300 fastest generator in the chaotic iteration based family. In the remainder,
1301 this generator will be simply referred as CIPRNG, or ``the proposed PRNG'', if this statement does not
1302 raise ambiguity.
1303 \end{color}
1304
1305 \subsection{First Efficient Implementation of a PRNG based on Chaotic Iterations}
1306 \label{sec:efficient PRNG}
1307 %
1308 %Based on the proof presented in the previous section, it is now possible to 
1309 %improve the speed of the generator formerly presented in~\cite{bgw09:ip,guyeux10}. 
1310 %The first idea is to consider
1311 %that the provided strategy is a pseudorandom Boolean vector obtained by a
1312 %given PRNG.
1313 %An iteration of the system is simply the bitwise exclusive or between
1314 %the last computed state and the current strategy.
1315 %Topological properties of disorder exhibited by chaotic 
1316 %iterations can be inherited by the inputted generator, we hope by doing so to 
1317 %obtain some statistical improvements while preserving speed.
1318 %
1319 %%RAPH : j'ai viré tout ca
1320 %% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
1321 %% are
1322 %% done.  
1323 %% Suppose  that $x$ and the  strategy $S^i$ are given as
1324 %% binary vectors.
1325 %% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
1326
1327 %% \begin{table}
1328 %% \begin{scriptsize}
1329 %% $$
1330 %% \begin{array}{|cc|cccccccccccccccc|}
1331 %% \hline
1332 %% x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
1333 %% \hline
1334 %% S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
1335 %% \hline
1336 %% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
1337 %% \hline
1338
1339 %% \hline
1340 %%  \end{array}
1341 %% $$
1342 %% \end{scriptsize}
1343 %% \caption{Example of an arbitrary round of the proposed generator}
1344 %% \label{TableExemple}
1345 %% \end{table}
1346
1347
1348
1349
1350 \lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label={algo:seqCIPRNG}}
1351 \begin{small}
1352 \begin{lstlisting}
1353
1354 unsigned int CIPRNG() {
1355   static unsigned int x = 123123123;
1356   unsigned long t1 = xorshift();
1357   unsigned long t2 = xor128();
1358   unsigned long t3 = xorwow();
1359   x = x^(unsigned int)t1;
1360   x = x^(unsigned int)(t2>>32);
1361   x = x^(unsigned int)(t3>>32);
1362   x = x^(unsigned int)t2;
1363   x = x^(unsigned int)(t1>>32);
1364   x = x^(unsigned int)t3;
1365   return x;
1366 }
1367 \end{lstlisting}
1368 \end{small}
1369
1370
1371
1372 In Listing~\ref{algo:seqCIPRNG} a sequential  version of the proposed PRNG based
1373 on  chaotic  iterations  is  presented.   The xor  operator  is  represented  by
1374 \textasciicircum.  This function uses  three classical 64-bits PRNGs, namely the
1375 \texttt{xorshift},         the          \texttt{xor128},         and         the
1376 \texttt{xorwow}~\cite{Marsaglia2003}.  In the following, we call them ``xor-like
1377 PRNGs''.   As each  xor-like PRNG  uses 64-bits  whereas our  proposed generator
1378 works with 32-bits, we use the command \texttt{(unsigned int)}, that selects the
1379 32 least  significant bits  of a given  integer, and the  code \texttt{(unsigned
1380   int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
1381
1382 Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
1383 that  are provided by  3 64-bits  PRNGs.  This  version successfully  passes the
1384 stringent BigCrush battery of tests~\cite{LEcuyerS07}. 
1385 \begin{color}{red}At this point, we thus
1386 have defined an efficient and statistically unbiased generator. Its speed is
1387 directly related to the use of linear operations, but for the same reason,
1388 this fast generator cannot be proven as secure.
1389 \end{color}
1390
1391
1392 \section{Efficient PRNGs based on Chaotic Iterations on GPU}
1393 \label{sec:efficient PRNG gpu}
1394
1395 In order to  take benefits from the computing power  of GPU, a program
1396 needs  to have  independent blocks  of  threads that  can be  computed
1397 simultaneously. In general,  the larger the number of  threads is, the
1398 more local  memory is  used, and the  less branching  instructions are
1399 used  (if,  while,  ...),  the  better the  performances  on  GPU  is.
1400 Obviously, having these requirements in  mind, it is possible to build
1401 a   program    similar   to    the   one   presented    in  Listing 
1402 \ref{algo:seqCIPRNG}, which computes  pseudorandom numbers on GPU.  To
1403 do  so,  we  must   firstly  recall  that  in  the  CUDA~\cite{Nvid10}
1404 environment,    threads    have     a    local    identifier    called
1405 \texttt{ThreadIdx},  which   is  relative  to   the  block  containing
1406 them. Furthermore, in  CUDA, parts of  the code that are executed by the  GPU, are
1407 called {\it kernels}.
1408
1409
1410 \subsection{Naive Version for GPU}
1411
1412  
1413 It is possible to deduce from the CPU version a quite similar version adapted to GPU.
1414 The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.  
1415 Of course,  the  three xor-like
1416 PRNGs  used in these computations must have different  parameters. 
1417 In a given thread, these parameters are
1418 randomly picked from another PRNGs. 
1419 The  initialization stage is performed by  the CPU.
1420 To do it, the  ISAAC  PRNG~\cite{Jenkins96} is used to  set  all  the
1421 parameters embedded into each thread.   
1422
1423 The implementation of  the three
1424 xor-like  PRNGs  is  straightforward  when  their  parameters  have  been
1425 allocated in  the GPU memory.  Each xor-like  works with  an internal
1426 number  $x$  that saves  the  last  generated  pseudorandom number. Additionally,  the
1427 implementation of the  xor128, the xorshift, and the  xorwow respectively require
1428 4, 5, and 6 unsigned long as internal variables.
1429
1430
1431 \begin{algorithm}
1432 \begin{small}
1433 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
1434 PRNGs in global memory\;
1435 NumThreads: number of threads\;}
1436 \KwOut{NewNb: array containing random numbers in global memory}
1437 \If{threadIdx is concerned by the computation} {
1438   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
1439   \For{i=1 to n} {
1440     compute a new PRNG as in Listing\ref{algo:seqCIPRNG}\;
1441     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1442   }
1443   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1444 }
1445 \end{small}
1446 \caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
1447 \label{algo:gpu_kernel}
1448 \end{algorithm}
1449
1450
1451
1452 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of the proposed  PRNG on
1453 GPU.  Due to the available  memory in the  GPU and the number  of threads
1454 used simultaneously,  the number  of random numbers  that a thread  can generate
1455 inside   a    kernel   is   limited  (\emph{i.e.},    the    variable   \texttt{n}   in
1456 algorithm~\ref{algo:gpu_kernel}). For instance, if  $100,000$ threads are used and
1457 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
1458 then   the  memory   required   to  store all of the  internals   variables  of both the  xor-like
1459 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
1460 and  the pseudorandom  numbers generated by  our  PRNG,  is  equal to  $100,000\times  ((4+5+6)\times
1461 2+(1+100))=1,310,000$ 32-bits numbers, that is, approximately $52$Mb.
1462
1463 This generator is able to pass the whole BigCrush battery of tests, for all
1464 the versions that have been tested depending on their number of threads 
1465 (called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
1466
1467 \begin{remark}
1468 The proposed algorithm has  the  advantage of  manipulating  independent
1469 PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
1470 to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
1471 using a master node for the initialization. This master node computes the initial parameters
1472 for all the different nodes involved in the computation.
1473 \end{remark}
1474
1475 \subsection{Improved Version for GPU}
1476
1477 As GPU cards using CUDA have shared memory between threads of the same block, it
1478 is possible  to use this  feature in order  to simplify the  previous algorithm,
1479 i.e., to use less  than 3 xor-like PRNGs. The solution  consists in computing only
1480 one xor-like PRNG by thread, saving  it into the shared memory, and then to use the results
1481 of some  other threads in the  same block of  threads. In order to  define which
1482 thread uses the result of which other  one, we can use a combination array that
1483 contains  the indexes  of  all threads  and  for which  a combination has  been
1484 performed. 
1485
1486 In  Algorithm~\ref{algo:gpu_kernel2},  two  combination  arrays are  used.   The
1487 variable     \texttt{offset}    is     computed    using     the     value    of
1488 \texttt{combination\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
1489 representing the  indexes of  the other  threads whose results  are used  by the
1490 current one.   In this algorithm, we  consider that a 32-bits  xor-like PRNG has
1491 been chosen. In practice, we  use the xor128 proposed in~\cite{Marsaglia2003} in
1492 which  unsigned longs  (64 bits)  have been  replaced by  unsigned  integers (32
1493 bits).
1494
1495 This version  can also pass the whole {\it BigCrush} battery of tests.
1496
1497 \begin{algorithm}
1498 \begin{small}
1499 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
1500 in global memory\;
1501 NumThreads: Number of threads\;
1502 array\_comb1, array\_comb2: Arrays containing combinations of size combination\_size\;}
1503
1504 \KwOut{NewNb: array containing random numbers in global memory}
1505 \If{threadId is concerned} {
1506   retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
1507   offset = threadIdx\%combination\_size\;
1508   o1 = threadIdx-offset+array\_comb1[offset]\;
1509   o2 = threadIdx-offset+array\_comb2[offset]\;
1510   \For{i=1 to n} {
1511     t=xor-like()\;
1512     t=t\textasciicircum shmem[o1]\textasciicircum shmem[o2]\;
1513     shared\_mem[threadId]=t\;
1514     x = x\textasciicircum t\;
1515
1516     store the new PRNG in NewNb[NumThreads*threadId+i]\;
1517   }
1518   store internal variables in InternalVarXorLikeArray[threadId]\;
1519 }
1520 \end{small}
1521 \caption{Main kernel for the chaotic iterations based PRNG GPU efficient
1522 version\label{IR}}
1523 \label{algo:gpu_kernel2} 
1524 \end{algorithm}
1525
1526 \begin{color}{red}
1527 \subsection{Chaos Evaluation of the Improved Version}
1528 \end{color}
1529
1530 A run of Algorithm~\ref{algo:gpu_kernel2} consists in an operation ($x=x\oplus t$) having 
1531 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
1532 system of Eq.~\ref{eq:generalIC}. That is, an iteration of the general chaotic
1533 iterations is realized between the last stored value $x$ of the thread and a strategy $t$
1534 (obtained by a bitwise exclusive or between a value provided by a xor-like() call
1535 and two values previously obtained by two other threads).
1536 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1537 we must guarantee that this dynamical system iterates on the space 
1538 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1539 The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
1540 To prevent from any flaws of chaotic properties, we must check that the right 
1541 term (the last $t$), corresponding to the strategies,  can possibly be equal to any
1542 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1543
1544 Such a result is obvious, as for the xor-like(), all the
1545 integers belonging into its interval of definition can occur at each iteration, and thus the 
1546 last $t$ respects the requirement. Furthermore, it is possible to
1547 prove by an immediate mathematical induction that, as the initial $x$
1548 is uniformly distributed (it is provided by a cryptographically secure PRNG),
1549 the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
1550 (this is the induction hypothesis), and thus the next $x$ is finally uniformly distributed.
1551
1552 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1553 chaotic iterations presented previously, and for this reason, it satisfies the 
1554 Devaney's formulation of a chaotic behavior.
1555
1556 \section{Experiments}
1557 \label{sec:experiments}
1558
1559 Different experiments  have been  performed in order  to measure  the generation
1560 speed. We have used a first computer equipped with a Tesla C1060 NVidia  GPU card
1561 and an
1562 Intel  Xeon E5530 cadenced  at 2.40  GHz,  and 
1563 a second computer  equipped with a smaller  CPU and  a GeForce GTX  280. 
1564 All the
1565 cards have 240 cores.
1566
1567 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
1568 generated per second with various xor-like based PRNGs. In this figure, the optimized
1569 versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
1570 embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
1571 order to obtain the optimal performances, the storage of pseudorandom numbers
1572 into the GPU memory has been removed. This step is time consuming and slows down the numbers
1573 generation.  Moreover this   storage  is  completely
1574 useless, in case of applications that consume the pseudorandom
1575 numbers  directly   after generation. We can see  that when the number of  threads is greater
1576 than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
1577 per second  is almost constant.  With the  naive version, this value ranges from 2.5 to
1578 3GSamples/s.   With  the  optimized   version,  it  is  approximately  equal to
1579 20GSamples/s. Finally  we can remark  that both GPU  cards are quite  similar, but in
1580 practice,  the Tesla C1060  has more  memory than  the GTX  280, and  this memory
1581 should be of better quality.
1582 As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of  about
1583 138MSample/s when using one core of the Xeon E5530.
1584
1585 \begin{figure}[htbp]
1586 \begin{center}
1587   \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf}
1588 \end{center}
1589 \caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
1590 \label{fig:time_xorlike_gpu}
1591 \end{figure}
1592
1593
1594
1595
1596
1597 In Figure~\ref{fig:time_bbs_gpu} we highlight  the performances of the optimized
1598 BBS-based PRNG on GPU.  On  the Tesla C1060 we obtain approximately 700MSample/s
1599 and  on the  GTX 280  about  670MSample/s, which  is obviously  slower than  the
1600 xorlike-based PRNG on GPU. However, we  will show in the next sections that this
1601 new PRNG  has a strong  level of  security, which is  necessarily paid by  a speed
1602 reduction.
1603
1604 \begin{figure}[htbp]
1605 \begin{center}
1606   \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf}
1607 \end{center}
1608 \caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
1609 \label{fig:time_bbs_gpu}
1610 \end{figure}
1611
1612 All  these  experiments allow  us  to conclude  that  it  is possible  to
1613 generate a very large quantity of pseudorandom  numbers statistically perfect with the  xor-like version.
1614 To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being
1615 explained by the fact that the former  version has ``only''
1616 chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
1617 as it is shown in the next sections.
1618
1619
1620
1621
1622
1623
1624
1625 \section{Security Analysis}
1626
1627
1628 \begin{color}{red}
1629 This section is dedicated to the security analysis of the
1630   proposed PRNGs, both from a theoretical and a practical points of view.
1631
1632 \subsection{Theoretical Proof of Security}
1633 \label{sec:security analysis}
1634
1635 The standard definition
1636   of {\it indistinguishability} used is the classical one as defined for
1637   instance in~\cite[chapter~3]{Goldreich}. 
1638   This property shows that predicting the future results of the PRNG
1639   cannot be done in a reasonable time compared to the generation time. It is important to emphasize that this
1640   is a relative notion between breaking time and the sizes of the
1641   keys/seeds. Of course, if small keys or seeds are chosen, the system can
1642   be broken in practice. But it also means that if the keys/seeds are large
1643   enough, the system is secured.
1644 As a complement, an example of a concrete practical evaluation of security
1645 is outlined in the next subsection.
1646 \end{color}
1647
1648 In this section the concatenation of two strings $u$ and $v$ is classically
1649 denoted by $uv$.
1650 In a cryptographic context, a pseudorandom generator is a deterministic
1651 algorithm $G$ transforming strings  into strings and such that, for any
1652 seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
1653 $\ell_G(m)$ with $\ell_G(m)>m$.
1654 The notion of {\it secure} PRNGs can now be defined as follows. 
1655
1656 \begin{definition}
1657 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1658 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1659 large $m$'s,
1660 $$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
1661 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1662 probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
1663 internal coin tosses of $D$. 
1664 \end{definition}
1665
1666 Intuitively, it means that there is no polynomial time algorithm that can
1667 distinguish a perfect uniform random generator from $G$ with a non
1668 negligible probability.
1669 \begin{color}{red}
1670  An equivalent formulation of this well-known 
1671 security property means that it is possible 
1672 \emph{in practice} to predict the next bit of
1673 the generator, knowing all the previously 
1674 produced ones.
1675 \end{color}
1676 The interested reader is referred
1677 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
1678 quite easily possible to change the function $\ell$ into any polynomial
1679 function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
1680
1681 The generation schema developed in (\ref{equation Oplus}) is based on a
1682 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1683 without loss of generality, that for any string $S_0$ of size $N$, the size
1684 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1685 Let $S_1,\ldots,S_k$ be the 
1686 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1687 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1688 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1689 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1690 (x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1691 We claim now that if this PRNG is secure,
1692 then the new one is secure too.
1693
1694 \begin{proposition}
1695 \label{cryptopreuve}
1696 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1697 PRNG too.
1698 \end{proposition}
1699
1700 \begin{proof}
1701 The proposition is proven by contraposition. Assume that $X$ is not
1702 secure. By Definition, there exists a polynomial time probabilistic
1703 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1704 $N\geq \frac{k_0}{2}$ satisfying 
1705 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1706 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1707 $kN$:
1708 \begin{enumerate}
1709 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1710 \item Pick a string $y$ of size $N$ uniformly at random.
1711 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1712   \bigoplus_{i=1}^{i=k} w_i).$
1713 \item Return $D(z)$.
1714 \end{enumerate}
1715
1716
1717 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1718 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1719 (each $w_i$ has length $N$) to 
1720 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1721   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1722 \begin{equation}\label{PCH-1}
1723 D^\prime(w)=D(\varphi_y(w)),
1724 \end{equation}
1725 where $y$ is randomly generated. 
1726 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1727 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1728 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1729 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1730 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1731 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1732 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1733 one has
1734 $\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
1735 therefore, 
1736 \begin{equation}\label{PCH-2}
1737 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
1738 \end{equation}
1739
1740 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1741 \begin{equation}\label{PCH-3}
1742 D^\prime(H(x))=D(\varphi_y(H(x))),
1743 \end{equation}
1744 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1745 thus
1746 \begin{equation}%\label{PCH-3}      %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
1747 D^\prime(H(x))=D(yx),
1748 \end{equation}
1749 where $y$ is randomly generated. 
1750 It follows that 
1751
1752 \begin{equation}\label{PCH-4}
1753 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1754 \end{equation}
1755  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1756 there exists a polynomial time probabilistic
1757 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1758 $N\geq \frac{k_0}{2}$ satisfying 
1759 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1760 proving that $H$ is not secure, which is a contradiction. 
1761 \end{proof}
1762
1763
1764
1765 \begin{color}{red}
1766 \subsection{Practical Security Evaluation}
1767 \label{sec:Practicak evaluation}
1768
1769 Pseudorandom generators based on Eq.~\eqref{equation Oplus} are thus cryptographically secure when
1770 they are XORed with an already cryptographically
1771 secure PRNG. But, as stated previously,
1772 such a property does not mean that, whatever the
1773 key size, no attacker can predict the next bit
1774 knowing all the previously released ones.
1775 However, given a key size, it is possible to 
1776 measure in practice the minimum duration needed
1777 for an attacker to break a cryptographically
1778 secure PRNG, if we know the power of his/her
1779 machines. Such a concrete security evaluation 
1780 is related to the $(T,\varepsilon)-$security
1781 notion, which is recalled and evaluated in what 
1782 follows, for the sake of completeness.
1783
1784 Let us firstly recall that,
1785 \begin{definition}
1786 Let $\mathcal{D} : \mathds{B}^M \longrightarrow \mathds{B}$ be a probabilistic algorithm that runs
1787 in time $T$. 
1788 Let $\varepsilon > 0$. 
1789 $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
1790 generator $G$ if
1791
1792 \begin{flushleft}
1793 $\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right.$
1794 \end{flushleft}
1795
1796 \begin{flushright}
1797 $ - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$
1798 \end{flushright}
1799
1800 \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
1801 ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
1802 corresponding set.
1803 \end{definition}
1804
1805 Let us recall that the running time of a probabilistic algorithm is defined to be the
1806 maximum of the expected number of steps needed to produce an output, maximized
1807 over all inputs; the expected number is averaged over all coin flips made by the algorithm~\cite{Knuth97}.
1808 We are now able to define the notion of cryptographically secure PRNGs:
1809
1810 \begin{definition}
1811 A pseudorandom generator is $(T,\varepsilon)-$secure if there exists no $(T,\varepsilon)-$distinguishing attack on this pseudorandom generator.
1812 \end{definition}
1813
1814
1815
1816
1817
1818
1819
1820 Suppose now that the PRNG of Eq.~\eqref{equation Oplus} will work during 
1821 $M=100$ time units, and that during this period,
1822 an attacker can realize $10^{12}$ clock cycles.
1823 We thus wonder whether, during the PRNG's 
1824 lifetime, the attacker can distinguish this 
1825 sequence from truly random one, with a probability
1826 greater than $\varepsilon = 0.2$.
1827 We consider that $N$ has 900 bits.
1828
1829 Predicting the next generated bit knowing all the
1830 previously released ones by Eq.~\eqref{equation Oplus} is obviously equivalent to predict the
1831 next bit in the BBS generator, which
1832 is cryptographically secure. More precisely, it
1833 is $(T,\varepsilon)-$secure: no 
1834 $(T,\varepsilon)-$distinguishing attack can be
1835 successfully realized on this PRNG, if~\cite{Fischlin}
1836 \begin{equation}
1837 T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
1838 \label{mesureConcrete}
1839 \end{equation}
1840 where $M$ is the length of the output ($M=100$ in
1841 our example), and $L(N)$ is equal to
1842 $$
1843 2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln(2)^\frac{1}{3}) \times ln(N~ln 2)^\frac{2}{3}\right)
1844 $$
1845 is the number of clock cycles to factor a $N-$bit
1846 integer.
1847
1848
1849
1850
1851 A direct numerical application shows that this attacker 
1852 cannot achieve its $(10^{12},0.2)$ distinguishing
1853 attack in that context.
1854
1855 \end{color}
1856
1857
1858 \section{Cryptographical Applications}
1859
1860 \subsection{A Cryptographically Secure PRNG for GPU}
1861 \label{sec:CSGPU}
1862
1863 It is  possible to build a  cryptographically secure PRNG based  on the previous
1864 algorithm (Algorithm~\ref{algo:gpu_kernel2}).   Due to Proposition~\ref{cryptopreuve},
1865 it simply consists  in replacing
1866 the  {\it  xor-like} PRNG  by  a  cryptographically  secure one.  
1867 We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
1868 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers (these
1869 prime numbers  need to be congruent  to 3 modulus  4). BBS is known to be
1870 very slow and only usable for cryptographic applications. 
1871
1872   
1873 The modulus operation is the most time consuming operation for current
1874 GPU cards.  So in order to obtain quite reasonable performances, it is
1875 required to use only modulus  on 32-bits integer numbers. Consequently
1876 $x_n^2$ need  to be lesser than $2^{32}$,  and thus the number $M$ must be
1877 lesser than $2^{16}$.  So in practice we can choose prime numbers around
1878 256 that are congruent to 3 modulus 4.  With 32-bits numbers, only the
1879 4 least significant bits of $x_n$ can be chosen (the maximum number of
1880 indistinguishable    bits    is    lesser    than   or    equals    to
1881 $log_2(log_2(M))$). In other words, to generate a  32-bits number, we need to use
1882 8 times  the BBS  algorithm with possibly different  combinations of  $M$. This
1883 approach is  not sufficient to be able to pass  all the tests of TestU01,
1884 as small values of  $M$ for the BBS  lead to
1885   small periods. So, in  order to add randomness  we have proceeded with
1886 the followings  modifications. 
1887 \begin{itemize}
1888 \item
1889 Firstly, we  define 16 arrangement arrays  instead of 2  (as described in
1890 Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
1891 the  PRNG kernels. In  practice, the  selection of   combination
1892 arrays to be used is different for all the threads. It is determined
1893 by using  the three last bits  of two internal variables  used by BBS.
1894 %This approach  adds more randomness.   
1895 In Algorithm~\ref{algo:bbs_gpu},
1896 character  \& is for the  bitwise AND. Thus using  \&7 with  a number
1897 gives the last 3 bits, thus providing a number between 0 and 7.
1898 \item
1899 Secondly, after the  generation of the 8 BBS numbers  for each thread, we
1900 have a 32-bits number whose period is possibly quite small. So
1901 to add randomness,  we generate 4 more BBS numbers   to
1902 shift  the 32-bits  numbers, and  add up to  6 new  bits.  This  improvement is
1903 described  in Algorithm~\ref{algo:bbs_gpu}.  In  practice, the last 2 bits
1904 of the first new BBS number are  used to make a left shift of at most
1905 3 bits. The  last 3 bits of the  second new BBS number are  added to the
1906 strategy whatever the value of the first left shift. The third and the
1907 fourth new BBS  numbers are used similarly to apply  a new left shift
1908 and add 3 new bits.
1909 \item
1910 Finally, as  we use 8 BBS numbers  for each thread, the  storage of these
1911 numbers at the end of the  kernel is performed using a rotation. So,
1912 internal  variable for  BBS number  1 is  stored in  place  2, internal
1913 variable  for BBS  number 2  is  stored in  place 3,  ..., and finally, internal
1914 variable for BBS number 8 is stored in place 1.
1915 \end{itemize}
1916
1917 \begin{algorithm}
1918 \begin{small}
1919 \KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
1920 in global memory\;
1921 NumThreads: Number of threads\;
1922 array\_comb: 2D Arrays containing 16 combinations (in first dimension)  of size combination\_size (in second dimension)\;
1923 array\_shift[4]=\{0,1,3,7\}\;
1924 }
1925
1926 \KwOut{NewNb: array containing random numbers in global memory}
1927 \If{threadId is concerned} {
1928   retrieve data from InternalVarBBSArray[threadId] in local variables including shared memory and x\;
1929   we consider that bbs1 ... bbs8 represent the internal states of the 8 BBS numbers\;
1930   offset = threadIdx\%combination\_size\;
1931   o1 = threadIdx-offset+array\_comb[bbs1\&7][offset]\;
1932   o2 = threadIdx-offset+array\_comb[8+bbs2\&7][offset]\;
1933   \For{i=1 to n} {
1934     t$<<$=4\;
1935     t|=BBS1(bbs1)\&15\;
1936     ...\;
1937     t$<<$=4\;
1938     t|=BBS8(bbs8)\&15\;
1939     \tcp{two new shifts}
1940     shift=BBS3(bbs3)\&3\;
1941     t$<<$=shift\;
1942     t|=BBS1(bbs1)\&array\_shift[shift]\;
1943     shift=BBS7(bbs7)\&3\;
1944     t$<<$=shift\;
1945     t|=BBS2(bbs2)\&array\_shift[shift]\;
1946     t=t\textasciicircum  shmem[o1]\textasciicircum     shmem[o2]\;
1947     shared\_mem[threadId]=t\;
1948     x = x\textasciicircum   t\;
1949
1950     store the new PRNG in NewNb[NumThreads*threadId+i]\;
1951   }
1952   store internal variables in InternalVarXorLikeArray[threadId] using a rotation\;
1953 }
1954 \end{small}
1955 \caption{main kernel for the BBS based PRNG GPU}
1956 \label{algo:bbs_gpu}
1957 \end{algorithm}
1958
1959 In Algorithm~\ref{algo:bbs_gpu}, $n$ is for  the quantity of random numbers that
1960 a thread has to  generate.  The operation t<<=4 performs a left  shift of 4 bits
1961 on the variable  $t$ and stores the result in  $t$, and $BBS1(bbs1)\&15$ selects
1962 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
1963 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
1964 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
1965 remark that the initialization $t$ is not a  necessity as we fill it 4 bits by 4
1966 bits, until  having obtained 32-bits.  The  two last new shifts  are realized in
1967 order to enlarge the small periods of  the BBS used here, to introduce a kind of
1968 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
1969   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
1970 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
1971 last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
1972 correspondence between the  shift and the number obtained  with \texttt{shift} 1
1973 to make the \texttt{and} operation is used. For example, with a left shift of 0,
1974 we  make an  and operation  with 0,  with  a left  shift of  3, we  make an  and
1975 operation with 7 (represented by 111 in binary mode).
1976
1977 It should  be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
1978 where $S^n$ is referred in this algorithm as $t$: each iteration of this
1979 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
1980 by secure bits produced by the BBS generator, and thus, due to
1981 Proposition~\ref{cryptopreuve}, the resulted PRNG is 
1982 cryptographically secure.
1983
1984 \begin{color}{red}
1985 As stated before, even if the proposed PRNG is cryptocaphically
1986 secure, it does not mean that such a generator
1987 can be used as described here when attacks are
1988 awaited. The problem is to determine the minimum 
1989 time required for an attacker, with a given 
1990 computational power, to predict under a probability
1991 lower than 0.5 the $n+1$th bit, knowing the $n$
1992 previous ones. The proposed GPU generator will be
1993 useful in a security context, at least in some 
1994 situations where a secret protected by a pseudorandom
1995 keystream is rapidly obsolete, if this time to 
1996 predict the next bit is large enough when compared
1997 to both the generation and transmission times.
1998 It is true that the prime numbers used in the last
1999 section are very small compared to up-to-date 
2000 security recommends. However the attacker has not
2001 access to each BBS, but to the output produced 
2002 by Algorithm~\ref{algo:bbs_gpu}, which is quite
2003 more complicated than a simple BBS. Indeed, to
2004 determine if this cryptographically secure PRNG
2005 on GPU can be useful in security context with the 
2006 proposed parameters, or if it is only a very fast
2007 and statistically perfect generator on GPU, its
2008 $(T,\varepsilon)-$security must be determined, and
2009 a formulation similar to Eq.\eqref{mesureConcrete}
2010 must be established. Authors
2011 hope to achieve to realize this difficult task in a future
2012 work.
2013 \end{color}
2014
2015
2016 \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
2017 \label{Blum-Goldwasser}
2018 We finish this research work by giving some thoughts about the use of
2019 the proposed PRNG in an asymmetric cryptosystem.
2020 This first approach will be further investigated in a future work.
2021
2022 \subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem}
2023
2024 The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm 
2025 proposed in 1984~\cite{Blum:1985:EPP:19478.19501}.  The encryption algorithm 
2026 implements a XOR-based stream cipher using the BBS PRNG, in order to generate 
2027 the keystream. Decryption is done by obtaining the initial seed thanks to
2028 the final state of the BBS generator and the secret key, thus leading to the
2029  reconstruction of the keystream.
2030
2031 The key generation consists in generating two prime numbers $(p,q)$, 
2032 randomly and independently of each other, that are
2033  congruent to 3 mod 4, and to compute the modulus $N=pq$.
2034 The public key is $N$, whereas the secret key is the factorization $(p,q)$.
2035
2036
2037 Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice:
2038 \begin{enumerate}
2039 \item Bob picks an integer $r$ randomly in the interval $\llbracket 1,N\rrbracket$ and computes $x_0 = r^2~mod~N$.
2040 \item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$,
2041 \begin{itemize}
2042 \item $i=0$.
2043 \item While $i \leqslant L-1$:
2044 \begin{itemize}
2045 \item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
2046 \item $i=i+1$,
2047 \item $x_i = (x_{i-1})^2~mod~N.$
2048 \end{itemize}
2049 \end{itemize}
2050 \item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus  b$. This ciphertext is $[c, y]$, where $y=x_{0}^{2^{L}}~mod~N.$
2051 \end{enumerate}
2052
2053
2054 When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ as follows:
2055 \begin{enumerate}
2056 \item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
2057 \item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
2058 \item She recomputes the bit-vector $b$ by using BBS and $x_0$.
2059 \item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus  b$.
2060 \end{enumerate}
2061
2062
2063 \subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}
2064
2065 We propose to adapt the Blum-Goldwasser protocol as follows. 
2066 Let $\mathsf{N} = \lfloor log(log(N)) \rfloor$ be the number of bits that can
2067 be obtained securely with the BBS generator using the public key $N$ of Alice.
2068 Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too, and
2069 her new public key will be $(S^0, N)$.
2070
2071 To encrypt his message, Bob will compute
2072 %%RAPH : ici, j'ai mis un simple $
2073 %\begin{equation}
2074 $c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
2075 $ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
2076 %%\end{equation}
2077 instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$. 
2078
2079 The same decryption stage as in Blum-Goldwasser leads to the sequence 
2080 $\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$.
2081 Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
2082 By doing so, the proposed generator is used in place of BBS, leading to
2083 the inheritance of all the properties presented in this paper.
2084
2085 \section{Conclusion}
2086
2087
2088 In  this  paper, a formerly proposed PRNG based on chaotic iterations
2089 has been generalized to improve its speed. It has been proven to be
2090 chaotic according to Devaney.
2091 Efficient implementations on  GPU using xor-like  PRNGs as input generators
2092 have shown that a very large quantity of pseudorandom numbers can be generated per second (about
2093 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
2094 namely the BigCrush.
2095 Furthermore, we have shown that when the inputted generator is cryptographically
2096 secure, then it is the case too for the PRNG we propose, thus leading to
2097 the possibility to develop fast and secure PRNGs using the GPU architecture.
2098 \begin{color}{red} An improvement of the Blum-Goldwasser cryptosystem, making it 
2099 behaves chaotically, has finally been proposed. \end{color}
2100
2101 In future  work we plan to extend this research, building a parallel PRNG for  clusters or
2102 grid computing. Topological properties of the various proposed generators will be investigated,
2103 and the use of other categories of PRNGs as input will be studied too. The improvement
2104 of Blum-Goldwasser will be deepened. Finally, we
2105 will try to enlarge the quantity of pseudorandom numbers generated per second either
2106 in a simulation context or in a cryptographic one.
2107
2108
2109
2110 \bibliographystyle{plain} 
2111 \bibliography{mabase}
2112 \end{document}