1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
10 \usepackage{algorithm2e}
12 \usepackage[standard]{ntheorem}
14 % Pour mathds : les ensembles IR, IN, etc.
17 % Pour avoir des intervalles d'entiers
21 % Pour faire des sous-figures dans les figures
22 \usepackage{subfigure}
26 \newtheorem{notation}{Notation}
28 \newcommand{\X}{\mathcal{X}}
29 \newcommand{\Go}{G_{f_0}}
30 \newcommand{\B}{\mathds{B}}
31 \newcommand{\N}{\mathds{N}}
32 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
35 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
37 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
40 \author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe
41 Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
46 In this paper we present a new pseudorandom number generator (PRNG) on
47 graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It
48 is firstly proven to be chaotic according to the Devaney's formulation. We thus propose an efficient
49 implementation for GPU that successfully passes the {\it BigCrush} tests, deemed to be the hardest
50 battery of tests in TestU01. Experiments show that this PRNG can generate
51 about 20 billions of random numbers per second on Tesla C1060 and NVidia GTX280
53 It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically
59 \section{Introduction}
61 Randomness is of importance in many fields as scientific simulations or cryptography.
62 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
63 called a pseudorandom number generator (PRNG), or by a physical non-deterministic
64 process having all the characteristics of a random noise, called a truly random number
66 In this paper, we focus on reproducible generators, useful for instance in
67 Monte-Carlo based simulators or in several cryptographic schemes.
68 These domains need PRNGs that are statistically irreproachable.
69 On some fields as in numerical simulations, speed is a strong requirement
70 that is usually attained by using parallel architectures. In that case,
71 a recurrent problem is that a deflate of the statistical qualities is often
72 reported, when the parallelization of a good PRNG is realized.
73 This is why ad-hoc PRNGs for each possible architecture must be found to
74 achieve both speed and randomness.
75 On the other side, speed is not the main requirement in cryptography: the great
76 need is to define \emph{secure} generators being able to withstand malicious
77 attacks. Roughly speaking, an attacker should not be able in practice to make
78 the distinction between numbers obtained with the secure generator and a true random
80 Finally, a small part of the community working in this domain focus on a
81 third requirement, that is to define chaotic generators.
82 The main idea is to take benefits from a chaotic dynamical system to obtain a
83 generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
84 Their desire is to map a given chaotic dynamics into a sequence that seems random
85 and unassailable due to chaos.
86 However, the chaotic maps used as a pattern are defined in the real line
87 whereas computers deal with finite precision numbers.
88 This distortion leads to a deflation of both chaotic properties and speed.
89 Furthermore, authors of such chaotic generators often claim their PRNG
90 as secure due to their chaos properties, but there is no obvious relation
91 between chaos and security as it is understood in cryptography.
92 This is why the use of chaos for PRNG still remains marginal and disputable.
94 The authors' opinion is that topological properties of disorder, as they are
95 properly defined in the mathematical theory of chaos, can reinforce the quality
96 of a PRNG. But they are not substitutable for security or statistical perfection.
97 Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
98 one hand, a post-treatment based on a chaotic dynamical system can be applied
99 to a PRNG statistically deflective, in order to improve its statistical
100 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
101 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
102 cryptographically secure one, in case where chaos can be of interest,
103 \emph{only if these last properties are not lost during
104 the proposed post-treatment}. Such an assumption is behind this research work.
105 It leads to the attempts to define a
106 family of PRNGs that are chaotic while being fast and statistically perfect,
107 or cryptographically secure.
108 Let us finish this paragraph by noticing that, in this paper,
109 statistical perfection refers to the ability to pass the whole
110 {\it BigCrush} battery of tests, which is widely considered as the most
111 stringent statistical evaluation of a sequence claimed as random.
112 This battery can be found into the well-known TestU01 package~\cite{LEcuyerS07}.
113 Chaos, for its part, refers to the well-established definition of a
114 chaotic dynamical system proposed by Devaney~\cite{Devaney}.
117 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
118 as a chaotic dynamical system. Such a post-treatment leads to a new category of
119 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
120 family, and that the sequence obtained after this post-treatment can pass the
121 NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
123 The proposition of this paper is to improve widely the speed of the formerly
124 proposed generator, without any lack of chaos or statistical properties.
125 In particular, a version of this PRNG on graphics processing units (GPU)
127 Although GPU was initially designed to accelerate
128 the manipulation of images, they are nowadays commonly used in many scientific
129 applications. Therefore, it is important to be able to generate pseudorandom
130 numbers inside a GPU when a scientific application runs in it. This remark
131 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.
133 allows us to generated almost 20 billions of pseudorandom numbers per second.
134 Last, but not least, we show that the proposed post-treatment preserves the
135 cryptographical security of the inputted PRNG, when this last has such a
138 The remainder of this paper is organized as follows. In Section~\ref{section:related
139 works} we review some GPU implementations of PRNGs. Section~\ref{section:BASIC
140 RECALLS} gives some basic recalls on the well-known Devaney's formulation of chaos,
141 and on an iteration process called ``chaotic
142 iterations'' on which the post-treatment is based.
143 Proofs of chaos are given in Section~\ref{sec:pseudorandom}.
144 Section~\ref{sec:efficient prng} presents an efficient
145 implementation of this chaotic PRNG on a CPU, whereas Section~\ref{sec:efficient prng
146 gpu} describes the GPU implementation.
147 Such generators are experimented in
148 Section~\ref{sec:experiments}.
149 We show in Section~\ref{sec:security analysis} that, if the inputted
150 generator is cryptographically secure, then it is the case too for the
151 generator provided by the post-treatment.
152 Such a proof leads to the proposition of a cryptographically secure and
153 chaotic generator on GPU based on the famous Blum Blum Shum
154 in Section~\ref{sec:CSGPU}.
155 This research work ends by a conclusion section, in which the contribution is
156 summarized and intended future work is presented.
161 \section{Related works on GPU based PRNGs}
162 \label{section:related works}
164 Numerous research works on defining GPU based PRNGs have yet been proposed in the
165 literature, so that completeness is impossible.
166 This is why authors of this document only give reference to the most significant attempts
167 in this domain, from their subjective point of view.
168 The quantity of pseudorandom numbers generated per second is mentioned here
169 only when the information is given in the related work.
170 A million numbers per second will be simply written as
171 1MSample/s whereas a billion numbers per second is 1GSample/s.
173 In \cite{Pang:2008:cec} a PRNG based on cellular automata is defined
174 with no requirement to an high precision integer arithmetic or to any bitwise
175 operations. Authors can generate about
176 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
177 However, there is neither a mention of statistical tests nor any proof of
178 chaos or cryptography in this document.
180 In \cite{ZRKB10}, the authors propose different versions of efficient GPU PRNGs
181 based on Lagged Fibonacci or Hybrid Taus. They have used these
182 PRNGs for Langevin simulations of biomolecules fully implemented on
183 GPU. Performance of the GPU versions are far better than those obtained with a
184 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01.
185 However the evaluations of the proposed PRNGs are only statistical ones.
188 Authors of~\cite{conf/fpga/ThomasHL09} have studied the implementation of some
189 PRNGs on different computing architectures: CPU, field-programmable gate array
190 (FPGA), massively parallel processors, and GPU. This study is of interest, because
191 the performance of the same PRNGs on different architectures are compared.
192 FPGA appears as the fastest and the most
193 efficient architecture, providing the fastest number of generated pseudorandom numbers
195 However, we can notice that authors can ``only'' generate between 11 and 16GSamples/s
196 with a GTX 280 GPU, which should be compared with
197 the results presented in this document.
198 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
199 able to pass the {\it Crush} battery, which is very easy compared to the {\it Big Crush} one.
201 Lastly, Cuda has developed a library for the generation of pseudorandom numbers called
202 Curand~\cite{curand11}. Several PRNGs are implemented, among
204 Xorwow~\cite{Marsaglia2003} and some variants of Sobol. The tests reported show that
205 their fastest version provides 15GSamples/s on the new Fermi C2050 card.
206 But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
209 We can finally remark that, to the best of our knowledge, no GPU implementation have been proven to be chaotic, and the cryptographically secure property is surprisingly never regarded.
211 \section{Basic Recalls}
212 \label{section:BASIC RECALLS}
214 This section is devoted to basic definitions and terminologies in the fields of
215 topological chaos and chaotic iterations.
216 \subsection{Devaney's Chaotic Dynamical Systems}
218 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
219 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
220 is for the $k^{th}$ composition of a function $f$. Finally, the following
221 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
224 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
225 \mathcal{X} \rightarrow \mathcal{X}$.
228 $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
229 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
234 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
235 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
239 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
240 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
241 any neighborhood of $x$ contains at least one periodic point (without
242 necessarily the same period).
246 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
247 $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
248 topologically transitive.
251 The chaos property is strongly linked to the notion of ``sensitivity'', defined
252 on a metric space $(\mathcal{X},d)$ by:
255 \label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
256 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
257 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
258 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
260 $\delta$ is called the \emph{constant of sensitivity} of $f$.
263 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
264 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
265 sensitive dependence on initial conditions (this property was formerly an
266 element of the definition of chaos). To sum up, quoting Devaney
267 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
268 sensitive dependence on initial conditions. It cannot be broken down or
269 simplified into two subsystems which do not interact because of topological
270 transitivity. And in the midst of this random behavior, we nevertheless have an
271 element of regularity''. Fundamentally different behaviors are consequently
272 possible and occur in an unpredictable way.
276 \subsection{Chaotic Iterations}
277 \label{sec:chaotic iterations}
280 Let us consider a \emph{system} with a finite number $\mathsf{N} \in
281 \mathds{N}^*$ of elements (or \emph{cells}), so that each cell has a
282 Boolean \emph{state}. Having $\mathsf{N}$ Boolean values for these
283 cells leads to the definition of a particular \emph{state of the
284 system}. A sequence which elements belong to $\llbracket 1;\mathsf{N}
285 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
286 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
289 \label{Def:chaotic iterations}
290 The set $\mathds{B}$ denoting $\{0,1\}$, let
291 $f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be
292 a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a ``strategy''. The so-called
293 \emph{chaotic iterations} are defined by $x^0\in
294 \mathds{B}^{\mathsf{N}}$ and
296 \forall n\in \mathds{N}^{\ast }, \forall i\in
297 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
299 x_i^{n-1} & \text{ if }S^n\neq i \\
300 \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
305 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
306 \textquotedblleft iterated\textquotedblright . Note that in a more
307 general formulation, $S^n$ can be a subset of components and
308 $\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by
309 $\left(f(x^{k})\right)_{S^{n}}$, where $k<n$, describing for example,
310 delays transmission~\cite{Robert1986,guyeux10}. Finally, let us remark that
311 the term ``chaotic'', in the name of these iterations, has \emph{a
312 priori} no link with the mathematical theory of chaos, presented above.
315 Let us now recall how to define a suitable metric space where chaotic iterations
316 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
318 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
319 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
322 F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
323 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
324 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
325 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
328 \noindent where + and . are the Boolean addition and product operations.
329 Consider the phase space:
331 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
332 \mathds{B}^\mathsf{N},
334 \noindent and the map defined on $\mathcal{X}$:
336 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
338 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
339 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
340 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function}
341 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
342 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
343 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
347 X^0 \in \mathcal{X} \\
353 With this formulation, a shift function appears as a component of chaotic
354 iterations. The shift function is a famous example of a chaotic
355 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
357 To study this claim, a new distance between two points $X = (S,E), Y =
358 (\check{S},\check{E})\in
359 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
361 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
367 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
368 }\delta (E_{k},\check{E}_{k})}, \\
369 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
370 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
376 This new distance has been introduced to satisfy the following requirements.
378 \item When the number of different cells between two systems is increasing, then
379 their distance should increase too.
380 \item In addition, if two systems present the same cells and their respective
381 strategies start with the same terms, then the distance between these two points
382 must be small because the evolution of the two systems will be the same for a
383 while. Indeed, the two dynamical systems start with the same initial condition,
384 use the same update function, and as strategies are the same for a while, then
385 components that are updated are the same too.
387 The distance presented above follows these recommendations. Indeed, if the floor
388 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
389 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
390 measure of the differences between strategies $S$ and $\check{S}$. More
391 precisely, this floating part is less than $10^{-k}$ if and only if the first
392 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
393 nonzero, then the $k^{th}$ terms of the two strategies are different.
394 The impact of this choice for a distance will be investigate at the end of the document.
396 Finally, it has been established in \cite{guyeux10} that,
399 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
400 the metric space $(\mathcal{X},d)$.
403 The chaotic property of $G_f$ has been firstly established for the vectorial
404 Boolean negation $f(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
405 introduced the notion of asynchronous iteration graph recalled bellow.
407 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
408 {\emph{asynchronous iteration graph}} associated with $f$ is the
409 directed graph $\Gamma(f)$ defined by: the set of vertices is
410 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and
411 $i\in \llbracket1;\mathsf{N}\rrbracket$,
412 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$.
413 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
414 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
415 strategy $s$ such that the parallel iteration of $G_f$ from the
416 initial point $(s,x)$ reaches the point $x'$.
418 We have finally proven in \cite{bcgr11:ip} that,
422 \label{Th:Caractérisation des IC chaotiques}
423 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic (according to Devaney)
424 if and only if $\Gamma(f)$ is strongly connected.
427 This result of chaos has lead us to study the possibility to build a
428 pseudorandom number generator (PRNG) based on the chaotic iterations.
429 As $G_f$, defined on the domain $\llbracket 1 ; \mathsf{N} \rrbracket^{\mathds{N}}
430 \times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
431 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
432 during implementations (due to the discrete nature of $f$). It is as if
433 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ; \mathsf{N}
434 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
436 \section{Application to pseudorandomness}
437 \label{sec:pseudorandom}
439 \subsection{A First pseudorandom Number Generator}
441 We have proposed in~\cite{bgw09:ip} a new family of generators that receives
442 two PRNGs as inputs. These two generators are mixed with chaotic iterations,
443 leading thus to a new PRNG that improves the statistical properties of each
444 generator taken alone. Furthermore, our generator
445 possesses various chaos properties that none of the generators used as input
448 \begin{algorithm}[h!]
450 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
452 \KwOut{a configuration $x$ ($n$ bits)}
454 $k\leftarrow b + \textit{XORshift}(b)$\;
457 $s\leftarrow{\textit{XORshift}(n)}$\;
458 $x\leftarrow{F_f(s,x)}$\;
462 \caption{PRNG with chaotic functions}
466 \begin{algorithm}[h!]
467 \KwIn{the internal configuration $z$ (a 32-bit word)}
468 \KwOut{$y$ (a 32-bit word)}
469 $z\leftarrow{z\oplus{(z\ll13)}}$\;
470 $z\leftarrow{z\oplus{(z\gg17)}}$\;
471 $z\leftarrow{z\oplus{(z\ll5)}}$\;
475 \caption{An arbitrary round of \textit{XORshift} algorithm}
483 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
484 It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation des IC chaotiques};
485 an integer $b$, ensuring that the number of executed iterations is at least $b$
486 and at most $2b+1$; and an initial configuration $x^0$.
487 It returns the new generated configuration $x$. Internally, it embeds two
488 \textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
489 uniformly distributed
490 into $\llbracket 1 ; k \rrbracket$.
491 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
492 which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
493 with a bit shifted version of it. This PRNG, which has a period of
494 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
495 in our PRNG to compute the strategy length and the strategy elements.
498 We have proven in \cite{bcgr11:ip} that,
500 Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
501 iteration graph, $\check{M}$ its adjacency
502 matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
503 If $\Gamma(f)$ is strongly connected, then
504 the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows
505 a law that tends to the uniform distribution
506 if and only if $M$ is a double stochastic matrix.
509 This former generator as successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07}.
511 \subsection{Improving the Speed of the Former Generator}
513 Instead of updating only one cell at each iteration, we can try to choose a
514 subset of components and to update them together. Such an attempt leads
515 to a kind of merger of the two sequences used in Algorithm
516 \ref{CI Algorithm}. When the updating function is the vectorial negation,
517 this algorithm can be rewritten as follows:
522 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
523 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
526 \label{equation Oplus}
528 where $\oplus$ is for the bitwise exclusive or between two integers.
529 This rewritten can be understood as follows. The $n-$th term $S^n$ of the
530 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
531 the list of cells to update in the state $x^n$ of the system (represented
532 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th
533 component of this state (a binary digit) changes if and only if the $k-$th
534 digit in the binary decomposition of $S^n$ is 1.
536 The single basic component presented in Eq.~\ref{equation Oplus} is of
537 ordinary use as a good elementary brick in various PRNGs. It corresponds
538 to the following discrete dynamical system in chaotic iterations:
541 \forall n\in \mathds{N}^{\ast }, \forall i\in
542 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
544 x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
545 \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
549 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$,
550 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
551 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
552 decomposition of $S^n$ is 1. Such chaotic iterations are more general
553 than the ones presented in Definition \ref{Def:chaotic iterations} for
554 the fact that, instead of updating only one term at each iteration,
555 we select a subset of components to change.
558 Obviously, replacing Algorithm~\ref{CI Algorithm} by
559 Equation~\ref{equation Oplus}, possible when the iteration function is
560 the vectorial negation, leads to a speed improvement. However, proofs
561 of chaos obtained in~\cite{bg10:ij} have been established
562 only for chaotic iterations of the form presented in Definition
563 \ref{Def:chaotic iterations}. The question is now to determine whether the
564 use of more general chaotic iterations to generate pseudorandom numbers
565 faster, does not deflate their topological chaos properties.
567 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
569 Let us consider the discrete dynamical systems in chaotic iterations having
573 \forall n\in \mathds{N}^{\ast }, \forall i\in
574 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
576 x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
577 \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
582 In other words, at the $n^{th}$ iteration, only the cells whose id is
583 contained into the set $S^{n}$ are iterated.
585 Let us now rewrite these general chaotic iterations as usual discrete dynamical
586 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
587 is required in order to study the topological behavior of the system.
589 Let us introduce the following function:
592 \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
593 & (i,X) & \longmapsto & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X, \end{array}\right.
596 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
598 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
601 F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
602 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
603 & (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
604 (j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
607 where + and . are the Boolean addition and product operations, and $\overline{x}$
608 is the negation of the Boolean $x$.
609 Consider the phase space:
611 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
612 \mathds{B}^\mathsf{N},
614 \noindent and the map defined on $\mathcal{X}$:
616 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
618 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
619 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
620 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function}
621 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$.
622 Then the general chaotic iterations defined in Equation \ref{general CIs} can
623 be described by the following discrete dynamical system:
627 X^0 \in \mathcal{X} \\
633 Another time, a shift function appears as a component of these general chaotic
636 To study the Devaney's chaos property, a distance between two points
637 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
640 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
647 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
648 }\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
649 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
650 \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
654 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
655 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
659 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
663 $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
664 too, thus $d$ will be a distance as sum of two distances.
666 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then
667 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then
668 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
669 \item $d_s$ is symmetric
670 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
671 of the symmetric difference.
672 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$,
673 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$,
674 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
675 inequality is obtained.
680 Before being able to study the topological behavior of the general
681 chaotic iterations, we must firstly establish that:
684 For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on
685 $\left( \mathcal{X},d\right)$.
690 We use the sequential continuity.
691 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
692 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
693 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
694 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
695 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
697 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
698 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
699 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
700 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
701 cell will change its state:
702 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
704 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
705 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
706 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
707 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
709 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
710 identical and strategies $S^n$ and $S$ start with the same first term.\newline
711 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
712 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
713 \noindent We now prove that the distance between $\left(
714 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
715 0. Let $\varepsilon >0$. \medskip
717 \item If $\varepsilon \geqslant 1$, we see that distance
718 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
719 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
721 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
722 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
724 \exists n_{2}\in \mathds{N},\forall n\geqslant
725 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
727 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
729 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
730 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
731 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
732 10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline
735 \forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}%
736 ,\forall n\geqslant N_{0},
737 d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
738 \leqslant \varepsilon .
740 $G_{f}$ is consequently continuous.
744 It is now possible to study the topological behavior of the general chaotic
745 iterations. We will prove that,
748 \label{t:chaos des general}
749 The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
750 the Devaney's property of chaos.
753 Let us firstly prove the following lemma.
755 \begin{lemma}[Strong transitivity]
757 For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can
758 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
762 Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$.
763 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$,
764 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define
765 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
766 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
767 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
768 the form $(S',E')$ where $E'=E$ and $S'$ starts with
769 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
771 \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
772 \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
774 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$,
775 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
776 claimed in the lemma.
779 We can now prove the Theorem~\ref{t:chaos des general}...
781 \begin{proof}[Theorem~\ref{t:chaos des general}]
782 Firstly, strong transitivity implies transitivity.
784 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
785 prove that $G_f$ is regular, it is sufficient to prove that
786 there exists a strategy $\tilde S$ such that the distance between
787 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
788 $(\tilde S,E)$ is a periodic point.
790 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
791 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
792 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$
793 and $t_2\in\mathds{N}$ such
794 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
796 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
797 of $S$ and the first $t_2$ terms of $S'$: $$\tilde
798 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
799 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
800 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
801 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
802 have $d((S,E),(\tilde S,E))<\epsilon$.
807 \section{Efficient PRNG based on Chaotic Iterations}
808 \label{sec:efficient prng}
810 In order to implement efficiently a PRNG based on chaotic iterations it is
811 possible to improve previous works [ref]. One solution consists in considering
812 that the strategy used contains all the bits for which the negation is
813 achieved out. Then in order to apply the negation on these bits we can simply
814 apply the xor operator between the current number and the strategy. In
815 order to obtain the strategy we also use a classical PRNG.
817 Here is an example with 16-bits numbers showing how the bitwise operations
819 applied. Suppose that $x$ and the strategy $S^i$ are defined in binary mode.
820 Then the following table shows the result of $x$ xor $S^i$.
822 \begin{array}{|cc|cccccccccccccccc|}
824 x &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
826 S^i &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
828 x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
839 \lstset{language=C,caption={C code of the sequential chaotic iterations based
840 PRNG},label=algo:seqCIprng}
842 unsigned int CIprng() {
843 static unsigned int x = 123123123;
844 unsigned long t1 = xorshift();
845 unsigned long t2 = xor128();
846 unsigned long t3 = xorwow();
847 x = x^(unsigned int)t1;
848 x = x^(unsigned int)(t2>>32);
849 x = x^(unsigned int)(t3>>32);
850 x = x^(unsigned int)t2;
851 x = x^(unsigned int)(t1>>32);
852 x = x^(unsigned int)t3;
861 In listing~\ref{algo:seqCIprng} a sequential version of our chaotic iterations
862 based PRNG is presented. The xor operator is represented by \textasciicircum.
863 This function uses three classical 64-bits PRNG: the \texttt{xorshift}, the
864 \texttt{xor128} and the \texttt{xorwow}. In the following, we call them
865 xor-like PRNGSs. These three PRNGs are presented in~\cite{Marsaglia2003}. As
866 each xor-like PRNG used works with 64-bits and as our PRNG works with 32-bits,
867 the use of \texttt{(unsigned int)} selects the 32 least significant bits whereas
868 \texttt{(unsigned int)(t3$>>$32)} selects the 32 most significants bits of the
869 variable \texttt{t}. So to produce a random number realizes 6 xor operations
870 with 6 32-bits numbers produced by 3 64-bits PRNG. This version successes the
871 BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
873 \section{Efficient PRNGs based on chaotic iterations on GPU}
874 \label{sec:efficient prng gpu}
876 In order to benefit from computing power of GPU, a program needs to define
877 independent blocks of threads which can be computed simultaneously. In general,
878 the larger the number of threads is, the more local memory is used and the less
879 branching instructions are used (if, while, ...), the better performance is
880 obtained on GPU. So with algorithm \ref{algo:seqCIprng} presented in the
881 previous section, it is possible to build a similar program which computes PRNG
882 on GPU. In the CUDA~\cite{Nvid10} environment, threads have a local
883 identificator, called \texttt{ThreadIdx} relative to the block containing them.
886 \subsection{Naive version for GPU}
888 From the CPU version, it is possible to obtain a quite similar version for GPU.
889 The principe consists in assigning the computation of a PRNG as in sequential to
890 each thread of the GPU. Of course, it is essential that the three xor-like
891 PRNGs used for our computation have different parameters. So we chose them
892 randomly with another PRNG. As the initialisation is performed by the CPU, we
893 have chosen to use the ISAAC PRNG~\cite{Jenkins96} to initalize all the
894 parameters for the GPU version of our PRNG. The implementation of the three
895 xor-like PRNGs is straightforward as soon as their parameters have been
896 allocated in the GPU memory. Each xor-like PRNGs used works with an internal
897 number $x$ which keeps the last generated random numbers. Other internal
898 variables are also used by the xor-like PRNGs. More precisely, the
899 implementation of the xor128, the xorshift and the xorwow respectively require
900 4, 5 and 6 unsigned long as internal variables.
904 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
905 PRNGs in global memory\;
906 NumThreads: Number of threads\;}
907 \KwOut{NewNb: array containing random numbers in global memory}
908 \If{threadIdx is concerned by the computation} {
909 retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
911 compute a new PRNG as in Listing\ref{algo:seqCIprng}\;
912 store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
914 store internal variables in InternalVarXorLikeArray[threadIdx]\;
917 \caption{main kernel for the chaotic iterations based PRNG GPU naive version}
918 \label{algo:gpu_kernel}
921 Algorithm~\ref{algo:gpu_kernel} presents a naive implementation of PRNG using
922 GPU. According to the available memory in the GPU and the number of threads
923 used simultenaously, the number of random numbers that a thread can generate
924 inside a kernel is limited, i.e. the variable \texttt{n} in
925 algorithm~\ref{algo:gpu_kernel}. For example, if $100,000$ threads are used and
926 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)}
927 then the memory required to store internals variables of xor-like
928 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
929 and random number of our PRNG is equals to $100,000\times ((4+5+6)\times
930 2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb.
932 All the tests performed to pass the BigCrush of TestU01 succeeded. Different
933 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
937 {\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
940 Algorithm~\ref{algo:gpu_kernel} has the advantage to manipulate independent
941 PRNGs, so this version is easily usable on a cluster of computer. The only thing
942 to ensure is to use a single ISAAC PRNG. For this, a simple solution consists in
943 using a master node for the initialization which computes the initial parameters
944 for all the differents nodes involves in the computation.
947 \subsection{Improved version for GPU}
949 As GPU cards using CUDA have shared memory between threads of the same block, it
950 is possible to use this feature in order to simplify the previous algorithm,
951 i.e., using less than 3 xor-like PRNGs. The solution consists in computing only
952 one xor-like PRNG by thread, saving it into shared memory and using the results
953 of some other threads in the same block of threads. In order to define which
954 thread uses the result of which other one, we can use a permutation array which
955 contains the indexes of all threads and for which a permutation has been
956 performed. In Algorithm~\ref{algo:gpu_kernel2}, 2 permutations arrays are used.
957 The variable \texttt{offset} is computed using the value of
958 \texttt{permutation\_size}. Then we can compute \texttt{o1} and \texttt{o2}
959 which represent the indexes of the other threads for which the results are used
960 by the current thread. In the algorithm, we consider that a 64-bits xor-like
961 PRNG is used, that is why both 32-bits parts are used.
963 This version also succeeds to the {\it BigCrush} batteries of tests.
967 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
969 NumThreads: Number of threads\;
970 tab1, tab2: Arrays containing permutations of size permutation\_size\;}
972 \KwOut{NewNb: array containing random numbers in global memory}
973 \If{threadId is concerned} {
974 retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
975 offset = threadIdx\%permutation\_size\;
976 o1 = threadIdx-offset+tab1[offset]\;
977 o2 = threadIdx-offset+tab2[offset]\;
980 t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\;
981 shared\_mem[threadId]=t\;
984 store the new PRNG in NewNb[NumThreads*threadId+i]\;
986 store internal variables in InternalVarXorLikeArray[threadId]\;
989 \caption{main kernel for the chaotic iterations based PRNG GPU efficient
991 \label{algo:gpu_kernel2}
994 \subsection{Theoretical Evaluation of the Improved Version}
996 A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having
997 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
998 system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
999 iterations are realized between two stored values of the PRNG.
1000 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1001 we must guarantee that this dynamical system iterates on the space
1002 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1003 The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
1004 To prevent from any flaws of chaotic properties, we must check that each right
1005 term, corresponding to terms of the strategies, can possibly be equal to any
1006 integer of $\llbracket 1, \mathsf{N} \rrbracket$.
1008 Such a result is obvious for the two first lines, as for the xor-like(), all the
1009 integers belonging into its interval of definition can occur at each iteration.
1010 It can be easily stated for the two last lines by an immediate mathematical
1013 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1014 chaotic iterations presented previously, and for this reason, it satisfies the
1015 Devaney's formulation of a chaotic behavior.
1017 \section{Experiments}
1018 \label{sec:experiments}
1020 Different experiments have been performed in order to measure the generation
1021 speed. We have used a computer equiped with Tesla C1060 NVidia GPU card and an
1022 Intel Xeon E5530 cadenced at 2.40 GHz for our experiments and we have used
1023 another one equipped with a less performant CPU and a GeForce GTX 280. Both
1024 cards have 240 cores.
1026 In Figure~\ref{fig:time_xorlike_gpu} we compare the number of random numbers
1027 generated per second with the xor-like based PRNG. In this figure, the optimized
1028 version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
1029 use the three xor-like PRNGs described in Listing~\ref{algo:seqCIprng}. In
1030 order to obtain the optimal performance we removed the storage of random numbers
1031 in the GPU memory. This step is time consuming and slows down the random numbers
1032 generation. Moreover, if one is interested by applications that consume random
1033 numbers directly when they are generated, their storage are completely
1034 useless. In this figure we can see that when the number of threads is greater
1035 than approximately 30,000 upto 5 millions the number of random numbers generated
1036 per second is almost constant. With the naive version, it is between 2.5 and
1037 3GSample/s. With the optimized version, it is approximately equals to
1038 20GSample/s. Finally we can remark that both GPU cards are quite similar. In
1039 practice, the Tesla C1060 has more memory than the GTX 280 and this memory
1040 should be of better quality.
1042 \begin{figure}[htbp]
1044 \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
1046 \caption{Number of random numbers generated per second with the xorlike based PRNG}
1047 \label{fig:time_xorlike_gpu}
1051 In comparison, Listing~\ref{algo:seqCIprng} allows us to generate about
1052 138MSample/s with only one core of the Xeon E5530.
1055 In Figure~\ref{fig:time_bbs_gpu} we highlight the performance of the optimized
1056 BBS based PRNG on GPU. Performances are less important. On the Tesla C1060 we
1057 obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
1059 \begin{figure}[htbp]
1061 \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
1063 \caption{Number of random numbers generated per second with the BBS based PRNG}
1064 \label{fig:time_bbs_gpu}
1067 Both these experimentations allows us to conclude that it is possible to
1068 generate a huge number of pseudorandom numbers with the xor-like version and
1069 about tens times less with the BBS based version. The former version has only
1070 chaotic properties whereas the latter also has cryptographically properties.
1073 %% \section{Cryptanalysis of the Proposed PRNG}
1076 %% Mettre ici la preuve de PCH
1078 %\section{The relativity of disorder}
1079 %\label{sec:de la relativité du désordre}
1081 %In the next two sections, we investigate the impact of the choices that have
1082 %lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
1084 %\subsection{Impact of the topology's finenesse}
1086 %Let us firstly introduce the following notations.
1089 %$\mathcal{X}_\tau$ will denote the topological space
1090 %$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
1091 %of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
1092 %$\mathcal{V} (x)$, if there is no ambiguity).
1098 %\label{Th:chaos et finesse}
1099 %Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
1100 %$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
1101 %both for $\tau$ and $\tau'$.
1103 %If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
1104 %$(\mathcal{X}_\tau,f)$ is chaotic too.
1108 %Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
1110 %Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
1111 %\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
1112 %can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
1113 %\varnothing$. Consequently, $f$ is $\tau-$transitive.
1115 %Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
1116 %all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
1117 %periodic point for $f$ into $V$.
1119 %Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
1120 %of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
1122 %But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
1123 %\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
1124 %periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
1128 %\subsection{A given system can always be claimed as chaotic}
1130 %Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
1131 %Then this function is chaotic (in a certain way):
1134 %Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
1135 %at least a fixed point.
1136 %Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
1142 %$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
1143 %\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
1145 %As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
1146 %an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
1147 %instance, $n=0$ is appropriate.
1149 %Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
1150 %\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
1151 %regular, and the result is established.
1157 %\subsection{A given system can always be claimed as non-chaotic}
1160 %Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
1161 %If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
1162 %(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
1166 %Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
1167 %f\right)$ is both transitive and regular.
1169 %Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
1170 %contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
1171 %f\right)$ is regular. Then $x$ must be a periodic point of $f$.
1173 %Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
1174 %because $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
1175 %\mathcal{X}, y \notin I_x$.
1177 %As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
1178 %sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
1179 %\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
1180 %\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
1188 %\section{Chaos on the order topology}
1189 %\label{sec: chaos order topology}
1190 %\subsection{The phase space is an interval of the real line}
1192 %\subsubsection{Toward a topological semiconjugacy}
1194 %In what follows, our intention is to establish, by using a topological
1195 %semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
1196 %iterations on a real interval. To do so, we must firstly introduce some
1197 %notations and terminologies.
1199 %Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
1200 %1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
1201 %\times \B^\mathsf{N}$.
1205 %The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
1206 %0, 2^{10} \big[$ is defined by:
1208 % \begin{array}{cccl}
1209 %\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
1210 %\longrightarrow & \big[ 0, 2^{10} \big[ \\
1211 % & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
1212 %\varphi \left((S,E)\right)
1215 %where $\varphi\left((S,E)\right)$ is the real number:
1217 %\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
1218 %is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
1219 %\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
1220 %\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$
1226 %$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
1227 %real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
1228 %iterations $\Go$ on this real interval. To do so, two intermediate functions
1229 %over $\big[ 0, 2^{10} \big[$ must be introduced:
1234 %Let $x \in \big[ 0, 2^{10} \big[$ and:
1236 %\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
1237 %$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
1238 %\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
1239 %decomposition of $x$ is the one that does not have an infinite number of 9:
1240 %$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
1242 %$e$ and $s$ are thus defined as follows:
1244 %\begin{array}{cccl}
1245 %e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
1246 % & x & \longmapsto & (e_0, \hdots, e_9)
1251 % \begin{array}{cccc}
1252 %s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
1253 %\rrbracket^{\mathds{N}} \\
1254 % & x & \longmapsto & (s^k)_{k \in \mathds{N}}
1259 %We are now able to define the function $g$, whose goal is to translate the
1260 %chaotic iterations $\Go$ on an interval of $\mathds{R}$.
1263 %$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
1265 %\begin{array}{cccc}
1266 %g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
1267 % & x & \longmapsto & g(x)
1270 %where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
1272 %\item its integral part has a binary decomposition equal to $e_0', \hdots,
1277 %e(x)_i & \textrm{ if } i \neq s^0\\
1278 %e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
1282 %\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
1289 %In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k +
1290 %\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
1293 %\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) +
1294 %\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}.
1298 %\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
1300 %Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
1301 %usual one being the Euclidian distance recalled bellow:
1304 %\index{distance!euclidienne}
1305 %$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
1306 %$\Delta(x,y) = |y-x|^2$.
1311 %This Euclidian distance does not reproduce exactly the notion of proximity
1312 %induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
1313 %This is the reason why we have to introduce the following metric:
1318 %Let $x,y \in \big[ 0, 2^{10} \big[$.
1319 %$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
1320 %defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
1323 %$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
1324 %\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
1325 %\dfrac{|S^k-\check{S}^k|}{10^k}}$.
1329 %\begin{proposition}
1330 %$D$ is a distance on $\big[ 0, 2^{10} \big[$.
1334 %The three axioms defining a distance must be checked.
1336 %\item $D \geqslant 0$, because everything is positive in its definition. If
1337 %$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
1338 %(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
1339 %$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
1340 %the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
1341 %\item $D(x,y)=D(y,x)$.
1342 %\item Finally, the triangular inequality is obtained due to the fact that both
1343 %$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
1348 %The convergence of sequences according to $D$ is not the same than the usual
1349 %convergence related to the Euclidian metric. For instance, if $x^n \to x$
1350 %according to $D$, then necessarily the integral part of each $x^n$ is equal to
1351 %the integral part of $x$ (at least after a given threshold), and the decimal
1352 %part of $x^n$ corresponds to the one of $x$ ``as far as required''.
1353 %To illustrate this fact, a comparison between $D$ and the Euclidian distance is
1354 %given Figure \ref{fig:comparaison de distances}. These illustrations show that
1355 %$D$ is richer and more refined than the Euclidian distance, and thus is more
1361 % \subfigure[Function $x \to dist(x;1,234) $ on the interval
1362 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
1363 % \subfigure[Function $x \to dist(x;3) $ on the interval
1364 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
1366 %\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
1367 %\label{fig:comparaison de distances}
1373 %\subsubsection{The semiconjugacy}
1375 %It is now possible to define a topological semiconjugacy between $\mathcal{X}$
1376 %and an interval of $\mathds{R}$:
1379 %Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
1380 %$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
1383 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
1384 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
1385 % @V{\varphi}VV @VV{\varphi}V\\
1386 %\left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[,
1393 %$\varphi$ has been constructed in order to be continuous and onto.
1396 %In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
1404 %\subsection{Study of the chaotic iterations described as a real function}
1409 % \subfigure[ICs on the interval
1410 %$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
1411 % \subfigure[ICs on the interval
1412 %$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
1413 % \subfigure[ICs on the interval
1414 %$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
1415 % \subfigure[ICs on the interval
1416 %$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
1418 %\caption{Representation of the chaotic iterations.}
1427 % \subfigure[ICs on the interval
1428 %$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
1429 % \subfigure[ICs on the interval
1430 %$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
1432 %\caption{ICs on small intervals.}
1438 % \subfigure[ICs on the interval
1439 %$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
1440 % \subfigure[ICs on the interval
1441 %$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
1443 %\caption{General aspect of the chaotic iterations.}
1448 %We have written a Python program to represent the chaotic iterations with the
1449 %vectorial negation on the real line $\mathds{R}$. Various representations of
1450 %these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
1451 %It can be remarked that the function $g$ is a piecewise linear function: it is
1452 %linear on each interval having the form $\left[ \dfrac{n}{10},
1453 %\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
1454 %slope is equal to 10. Let us justify these claims:
1456 %\begin{proposition}
1457 %\label{Prop:derivabilite des ICs}
1458 %Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
1459 %$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
1460 %\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
1462 %Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
1463 %\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
1464 %$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
1470 %Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
1471 %0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
1472 %prat $e$ and the same decimal part $s^0$: on the set $I_n$, functions $e(x)$
1473 %and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
1474 %the images $g(x)$ of these points $x$:
1476 %\item Have the same integral part, which is $e$, except probably the bit number
1477 %$s^0$. In other words, this integer has approximately the same binary
1478 %decomposition than $e$, the sole exception being the digit $s^0$ (this number is
1479 %then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
1480 %\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
1481 %\item A shift to the left has been applied to the decimal part $y$, losing by
1482 %doing so the common first digit $s^0$. In other words, $y$ has been mapped into
1483 %$10\times y - s^0$.
1485 %To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
1486 %multiplication by 10, and second, add the same constant to each term, which is
1487 %$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
1491 %Finally, chaotic iterations are elements of the large family of functions that
1492 %are both chaotic and piecewise linear (like the tent map).
1497 %\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
1499 %The two propositions bellow allow to compare our two distances on $\big[ 0,
1500 %2^\mathsf{N} \big[$:
1502 %\begin{proposition}
1503 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
1504 %2^\mathsf{N} \big[, D~\right)$ is not continuous.
1508 %The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
1511 %\item $\Delta (x^n,2) \to 0.$
1512 %\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
1515 %The sequential characterization of the continuity concludes the demonstration.
1522 %\begin{proposition}
1523 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
1524 %2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction.
1528 %If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
1529 %threshold, because $D_e$ only returns integers. So, after this threshold, the
1530 %integral parts of all the $x^n$ are equal to the integral part of $x$.
1532 %Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
1533 %\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
1534 %means that for all $k$, an index $N_k$ can be found such that, $\forall n
1535 %\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
1536 %digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
1540 %The conclusion of these propositions is that the proposed metric is more precise
1541 %than the Euclidian distance, that is:
1544 %$D$ is finer than the Euclidian distance $\Delta$.
1547 %This corollary can be reformulated as follows:
1550 %\item The topology produced by $\Delta$ is a subset of the topology produced by
1552 %\item $D$ has more open sets than $\Delta$.
1553 %\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
1554 %to converge with the one inherited by $\Delta$, which is denoted here by
1559 %\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
1560 %\label{chpt:Chaos des itérations chaotiques sur R}
1564 %\subsubsection{Chaos according to Devaney}
1566 %We have recalled previously that the chaotic iterations $\left(\Go,
1567 %\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
1568 %can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
1571 %\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
1572 %\big[_D\right)$ are semiconjugate by $\varphi$,
1573 %\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
1574 %according to Devaney, because the semiconjugacy preserve this character.
1575 %\item But the topology generated by $D$ is finer than the topology generated by
1576 %the Euclidian distance $\Delta$ -- which is the order topology.
1577 %\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
1578 %chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
1579 %topology on $\mathds{R}$.
1582 %This result can be formulated as follows.
1585 %\label{th:IC et topologie de l'ordre}
1586 %The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
1587 %Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
1591 %Indeed this result is weaker than the theorem establishing the chaos for the
1592 %finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
1593 %still remains important. Indeed, we have studied in our previous works a set
1594 %different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
1595 %in order to be as close as possible from the computer: the properties of
1596 %disorder proved theoretically will then be preserved when computing. However, we
1597 %could wonder whether this change does not lead to a disorder of a lower quality.
1598 %In other words, have we replaced a situation of a good disorder lost when
1599 %computing, to another situation of a disorder preserved but of bad quality.
1600 %Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
1608 \section{Security Analysis}
1609 \label{sec:security analysis}
1613 In this section the concatenation of two strings $u$ and $v$ is classically
1615 In a cryptographic context, a pseudorandom generator is a deterministic
1616 algorithm $G$ transforming strings into strings and such that, for any
1617 seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
1618 $\ell_G(N)$ with $\ell_G(N)>N$.
1619 The notion of {\it secure} PRNGs can now be defined as follows.
1622 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1623 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1625 $$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
1626 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1627 probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
1628 internal coin tosses of $D$.
1631 Intuitively, it means that there is no polynomial time algorithm that can
1632 distinguish a perfect uniform random generator from $G$ with a non
1633 negligible probability. The interested reader is referred
1634 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
1635 quite easily possible to change the function $\ell$ into any polynomial
1636 function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
1638 The generation schema developed in (\ref{equation Oplus}) is based on a
1639 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1640 without loss of generality, that for any string $S_0$ of size $N$, the size
1641 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$.
1642 Let $S_1,\ldots,S_k$ be the
1643 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1644 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1645 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1646 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1647 (x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$.
1648 We claim now that if this PRNG is secure,
1649 then the new one is secure too.
1652 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1657 The proposition is proved by contraposition. Assume that $X$ is not
1658 secure. By Definition, there exists a polynomial time probabilistic
1659 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1660 $N\geq \frac{k_0}{2}$ satisfying
1661 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1662 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1665 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1666 \item Pick a string $y$ of size $N$ uniformly at random.
1667 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1668 \bigoplus_{i=1}^{i=k} w_i).$
1669 \item Return $D(z)$.
1673 Consider for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1674 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1675 (each $w_i$ has length $N$) to
1676 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1677 \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1678 \begin{equation}\label{PCH-1}
1679 D^\prime(w)=D(\varphi_y(w)),
1681 where $y$ is randomly generated.
1682 Moreover, for each $y$, $\varphi_{y}$ is injective: if
1683 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1684 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1685 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1686 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1687 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1688 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1690 \begin{equation}\label{PCH-2}
1691 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
1694 Now, using (\ref{PCH-1}) again, one has for every $x$,
1695 \begin{equation}\label{PCH-3}
1696 D^\prime(H(x))=D(\varphi_y(H(x))),
1698 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1700 \begin{equation}\label{PCH-3}
1701 D^\prime(H(x))=D(yx),
1703 where $y$ is randomly generated.
1706 \begin{equation}\label{PCH-4}
1707 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1709 From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1710 there exist a polynomial time probabilistic
1711 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1712 $N\geq \frac{k_0}{2}$ satisfying
1713 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1714 proving that $H$ is not secure, a contradiction.
1720 \section{A cryptographically secure prng for GPU}
1722 It is possible to build a cryptographically secure prng based on the previous
1723 algorithm (algorithm~\ref{algo:gpu_kernel2}). It simply consists in replacing
1724 the {\it xor-like} algorithm by another cryptographically secure prng. In
1725 practice, we suggest to use the BBS algorithm~\cite{BBS} which takes the form:
1726 $$x_{n+1}=x_n^2~ mod~ M$$ where $M$ is the product of two prime numbers. Those
1727 prime numbers need to be congruent to 3 modulus 4. In practice, this PRNG is
1728 known to be slow and not efficient for the generation of random numbers. For
1729 current GPU cards, the modulus operation is the most time consuming
1730 operation. So in order to obtain quite reasonable performances, it is required
1731 to use only modulus on 32 bits integer numbers. Consequently $x_n^2$ need to be
1732 less than $2^{32}$ and the number $M$ need to be less than $2^{16}$. So in
1733 pratice we can choose prime numbers around 256 that are congruent to 3 modulus
1734 4. With 32 bits numbers, only the 4 least significant bits of $x_n$ can be
1735 chosen (the maximum number of undistinguishing is less or equals to
1736 $log_2(log_2(x_n))$). So to generate a 32 bits number, we need to use 8 times
1737 the BBS algorithm, with different combinations of $M$ is required.
1739 Currently this PRNG does not succeed to pass all the tests of TestU01.
1742 \section{Conclusion}
1745 In this paper we have presented a new class of PRNGs based on chaotic
1746 iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
1747 We also propose a PRNG cryptographically secure and its implementation on GPU.
1749 An efficient implementation on GPU based on a xor-like PRNG allows us to
1750 generate a huge number of pseudorandom numbers per second (about
1751 20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
1753 In future work we plan to extend this work for parallel PRNG for clusters or
1754 grid computing. We also plan to improve the BBS version in order to succeed all
1755 the tests of TestU01.
1759 \bibliographystyle{plain}
1760 \bibliography{mabase}