]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Avancées
[prng_gpu.git] / prng_gpu.tex
1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
4 \usepackage{fullpage}
5 \usepackage{fancybox}
6 \usepackage{amsmath}
7 \usepackage{amscd}
8 \usepackage{moreverb}
9 \usepackage{commath}
10 \usepackage{algorithm2e}
11 \usepackage{listings}
12 \usepackage[standard]{ntheorem}
13
14 % Pour mathds : les ensembles IR, IN, etc.
15 \usepackage{dsfont}
16
17 % Pour avoir des intervalles d'entiers
18 \usepackage{stmaryrd}
19
20 \usepackage{graphicx}
21 % Pour faire des sous-figures dans les figures
22 \usepackage{subfigure}
23
24 \usepackage{color}
25
26 \newtheorem{notation}{Notation}
27
28 \newcommand{\X}{\mathcal{X}}
29 \newcommand{\Go}{G_{f_0}}
30 \newcommand{\B}{\mathds{B}}
31 \newcommand{\N}{\mathds{N}}
32 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
33 \let\sur=\overline
34
35 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
36
37 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
38 \begin{document}
39
40 \author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
41 Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
42    
43 \maketitle
44
45 \begin{abstract}
46 In this paper we present a new pseudorandom number generator (PRNG) on
47 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
48 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
49 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
50 battery of tests in TestU01.  Experiments show that this PRNG can generate
51 about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
52 cards.
53 It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
54 secure.
55
56
57 \end{abstract}
58
59 \section{Introduction}
60
61 Randomness is of importance in many fields as scientific simulations or cryptography. 
62 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
63 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
64 process having all the characteristics of a random noise, called a truly random number
65 generator (TRNG). 
66 In this paper, we focus on reproducible generators, useful for instance in
67 Monte-Carlo based simulators or in several cryptographic schemes.
68 These domains need PRNGs that are statistically irreproachable. 
69 On some fields as in numerical simulations, speed is a strong requirement
70 that is usually attained by using parallel architectures. In that case,
71 a recurrent problem is that a deflate of the statistical qualities is often
72 reported, when the parallelization of a good PRNG is realized.
73 This is why ad-hoc PRNGs for each possible architecture must be found to
74 achieve both speed and randomness.
75 On the other side, speed is not the main requirement in cryptography: the great
76 need is to define \emph{secure} generators being able to withstand malicious
77 attacks. Roughly speaking, an attacker should not be able in practice to make 
78 the distinction between numbers obtained with the secure generator and a true random
79 sequence. 
80 Finally, a small part of the community working in this domain focus on a
81 third requirement, that is to define chaotic generators.
82 The main idea is to take benefits from a chaotic dynamical system to obtain a
83 generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
84 Their desire is to map a given chaotic dynamics into a sequence that seems random 
85 and unassailable due to chaos.
86 However, the chaotic maps used as a pattern are defined in the real line 
87 whereas computers deal with finite precision numbers.
88 This distortion leads to a deflation of both chaotic properties and speed.
89 Furthermore, authors of such chaotic generators often claim their PRNG
90 as secure due to their chaos properties, but there is no obvious relation
91 between chaos and security as it is understood in cryptography.
92 This is why the use of chaos for PRNG still remains marginal and disputable.
93
94 The authors' opinion is that topological properties of disorder, as they are
95 properly defined in the mathematical theory of chaos, can reinforce the quality
96 of a PRNG. But they are not substitutable for security or statistical perfection.
97 Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
98 one hand, a post-treatment based on a chaotic dynamical system can be applied
99 to a PRNG statistically deflective, in order to improve its statistical 
100 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
101 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
102 cryptographically secure one, in case where chaos can be of interest,
103 \emph{only if these last properties are not lost during
104 the proposed post-treatment}. Such an assumption is behind this research work.
105 It leads to the attempts to define a 
106 family of PRNGs that are chaotic while being fast and statistically perfect,
107 or cryptographically secure.
108 Let us finish this paragraph by noticing that, in this paper, 
109 statistical perfection refers to the ability to pass the whole 
110 {\it BigCrush} battery of tests, which is widely considered as the most
111 stringent statistical evaluation of a sequence claimed as random.
112 This battery can be found into the well-known TestU01 package.
113 Chaos, for its part, refers to the well-established definition of a
114 chaotic dynamical system proposed by Devaney~\cite{Devaney}.
115
116
117 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
118 as a chaotic dynamical system. Such a post-treatment leads to a new category of
119 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
120 family, and that the sequence obtained after this post-treatment can pass the
121 NIST, DieHARD, and TestU01 batteries of tests, even if the inputted generators
122 cannot.
123 The proposition of this paper is to improve widely the speed of the formerly
124 proposed generator, without any lack of chaos or statistical properties.
125 In particular, a version of this PRNG on graphics processing units (GPU)
126 is proposed.
127 Although GPU was initially designed  to accelerate
128 the manipulation of  images, they are nowadays commonly  used in many scientific
129 applications. Therefore,  it is important  to be able to  generate pseudorandom
130 numbers inside a GPU when a scientific application runs in it. This remark
131 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
132 Such device
133 allows us to generated almost 20 billions of pseudorandom numbers per second.
134 Last, but not least, we show that the proposed post-treatment preserves the
135 cryptographical security of the inputted PRNG, when this last has such a 
136 property.
137
138 The remainder of this paper  is organized as follows. In Section~\ref{section:related
139   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
140   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
141   and on an iteration process called ``chaotic
142 iterations'' on which the post-treatment is based. 
143 Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
144 Section~\ref{sec:efficient    prng}   presents   an   efficient
145 implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient prng
146   gpu}   describes   the  GPU   implementation. 
147 Such generators are experimented in 
148 Section~\ref{sec:experiments}.
149 We show in Section~\ref{sec:security analysis} that, if the inputted
150 generator is cryptographically secure, then it is the case too for the
151 generator provided by the post-treatment.
152 Such a proof leads to the proposition of a cryptographically secure and
153 chaotic generator on GPU based on the famous Blum Blum Shum
154 in Section~\ref{sec:CSGPU}.
155 This research work ends by a conclusion section, in which the contribution is
156 summarized and intended future work is presented.
157
158
159
160
161 \section{Related works on GPU based PRNGs}
162 \label{section:related works}
163
164 Numerous research works on defining GPU based PRNGs have yet been proposed  in the
165 literature, so that completeness is impossible.
166 This is why authors of this document only give reference to the most significant attempts 
167 in this domain, from their subjective point of view. 
168 The  quantity of pseudorandom numbers generated per second is mentioned here 
169 only when the information is given in the related work. 
170 A million numbers  per second will be simply written as
171 1MSample/s whereas a billion numbers per second is 1GSample/s.
172
173 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
174 with no  requirement to an high  precision  integer   arithmetic  or to any bitwise
175 operations. Authors can   generate  about
176 3.2MSample/s on a GeForce 7800 GTX GPU, which is quite an old card now.
177 However, there is neither a mention of statistical tests nor any proof of
178 chaos or cryptography in this document.
179
180 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
181 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
182 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
183 GPU. Performance of  the GPU versions are far better than  those obtained with a
184 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
185 However the evaluations of the proposed PRNGs are only statistical ones.
186
187
188 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
189 PRNGs on  diferrent computing architectures: CPU,  field-programmable gate array
190 (FPGA), GPU and massively parallel  processor. This study is interesting because
191 it  shows the  performance  of the  same  PRNGs on  different architectures.   For
192 example,  the FPGA  is globally  the  fastest architecture  and it  is also  the
193 efficient one because it provides the fastest number of generated random numbers
194 per joule. Concerning the GPU,  authors can generate betweend 11 and 16GSample/s
195 with a GTX 280  GPU. The drawback of this work is  that those PRNGs only succeed
196 the {\it Crush} test which is easier than the {\it Big Crush} test.
197
198 Cuda  has developped  a  library for  the  generation of  random numbers  called
199 Curand~\cite{curand11}.        Several       PRNGs        are       implemented:
200 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. Some  tests report that
201 the  fastest version provides  15GSample/s on  the new  Fermi C2050  card. Their
202 PRNGs fail to succeed the whole tests of TestU01 on only one test.
203 \newline
204 \newline
205 To the best of our knowledge no GPU implementation have been proven to have chaotic properties.
206
207 \section{Basic Recalls}
208 \label{section:BASIC RECALLS}
209 This section is devoted to basic definitions and terminologies in the fields of
210 topological chaos and chaotic iterations.
211 \subsection{Devaney's Chaotic Dynamical Systems}
212
213 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
214 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
215 is for the $k^{th}$ composition of a function $f$. Finally, the following
216 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
217
218
219 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
220 \mathcal{X} \rightarrow \mathcal{X}$.
221
222 \begin{definition}
223 $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
224 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
225 \varnothing$.
226 \end{definition}
227
228 \begin{definition}
229 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
230 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
231 \end{definition}
232
233 \begin{definition}
234 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
235 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
236 any neighborhood of $x$ contains at least one periodic point (without
237 necessarily the same period).
238 \end{definition}
239
240
241 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
242 $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
243 topologically transitive.
244 \end{definition}
245
246 The chaos property is strongly linked to the notion of ``sensitivity'', defined
247 on a metric space $(\mathcal{X},d)$ by:
248
249 \begin{definition}
250 \label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
251 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
252 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
253 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
254
255 $\delta$ is called the \emph{constant of sensitivity} of $f$.
256 \end{definition}
257
258 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
259 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
260 sensitive dependence on initial conditions (this property was formerly an
261 element of the definition of chaos). To sum up, quoting Devaney
262 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
263 sensitive dependence on initial conditions. It cannot be broken down or
264 simplified into two subsystems which do not interact because of topological
265 transitivity. And in the midst of this random behavior, we nevertheless have an
266 element of regularity''. Fundamentally different behaviors are consequently
267 possible and occur in an unpredictable way.
268
269
270
271 \subsection{Chaotic Iterations}
272 \label{sec:chaotic iterations}
273
274
275 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
276 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
277 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
278  cells  leads to the definition of a particular \emph{state  of the
279 system}. A sequence which  elements belong to $\llbracket 1;\mathsf{N}
280 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
281 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
282
283 \begin{definition}
284 \label{Def:chaotic iterations}
285 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
286 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
287 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
288 \emph{chaotic      iterations}     are     defined      by     $x^0\in
289 \mathds{B}^{\mathsf{N}}$ and
290 \begin{equation}
291 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
292 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
293 \begin{array}{ll}
294   x_i^{n-1} &  \text{ if  }S^n\neq i \\
295   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
296 \end{array}\right.
297 \end{equation}
298 \end{definition}
299
300 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
301 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
302 general  formulation,  $S^n$  can   be  a  subset  of  components  and
303 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
304 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
305 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
306 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
307 priori} no link with the mathematical theory of chaos, presented above.
308
309
310 Let us now recall how to define a suitable metric space where chaotic iterations
311 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
312
313 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
314 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
315 \begin{equation}
316 \begin{array}{lrll}
317 F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
318 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
319 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
320 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
321 \end{array}%
322 \end{equation}%
323 \noindent where + and . are the Boolean addition and product operations.
324 Consider the phase space:
325 \begin{equation}
326 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
327 \mathds{B}^\mathsf{N},
328 \end{equation}
329 \noindent and the map defined on $\mathcal{X}$:
330 \begin{equation}
331 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
332 \end{equation}
333 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
334 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
335 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
336 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
337 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
338 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
339 \begin{equation}
340 \left\{
341 \begin{array}{l}
342 X^0 \in \mathcal{X} \\
343 X^{k+1}=G_{f}(X^k).%
344 \end{array}%
345 \right.
346 \end{equation}%
347
348 With this formulation, a shift function appears as a component of chaotic
349 iterations. The shift function is a famous example of a chaotic
350 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
351 chaotic. 
352 To study this claim, a new distance between two points $X = (S,E), Y =
353 (\check{S},\check{E})\in
354 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
355 \begin{equation}
356 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
357 \end{equation}
358 \noindent where
359 \begin{equation}
360 \left\{
361 \begin{array}{lll}
362 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
363 }\delta (E_{k},\check{E}_{k})}, \\
364 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
365 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
366 \end{array}%
367 \right.
368 \end{equation}
369
370
371 This new distance has been introduced to satisfy the following requirements.
372 \begin{itemize}
373 \item When the number of different cells between two systems is increasing, then
374 their distance should increase too.
375 \item In addition, if two systems present the same cells and their respective
376 strategies start with the same terms, then the distance between these two points
377 must be small because the evolution of the two systems will be the same for a
378 while. Indeed, the two dynamical systems start with the same initial condition,
379 use the same update function, and as strategies are the same for a while, then
380 components that are updated are the same too.
381 \end{itemize}
382 The distance presented above follows these recommendations. Indeed, if the floor
383 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
384 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
385 measure of the differences between strategies $S$ and $\check{S}$. More
386 precisely, this floating part is less than $10^{-k}$ if and only if the first
387 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
388 nonzero, then the $k^{th}$ terms of the two strategies are different.
389 The impact of this choice for a distance will be investigate at the end of the document.
390
391 Finally, it has been established in \cite{guyeux10} that,
392
393 \begin{proposition}
394 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
395 the metric space $(\mathcal{X},d)$.
396 \end{proposition}
397
398 The chaotic property of $G_f$ has been firstly established for the vectorial
399 Boolean negation $f(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
400 introduced the notion of asynchronous iteration graph recalled bellow.
401
402 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
403 {\emph{asynchronous iteration graph}} associated with $f$ is the
404 directed graph $\Gamma(f)$ defined by: the set of vertices is
405 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
406 $i\in \llbracket1;\mathsf{N}\rrbracket$,
407 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
408 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
409 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
410 strategy $s$ such that the parallel iteration of $G_f$ from the
411 initial point $(s,x)$ reaches the point $x'$.
412
413 We have finally proven in \cite{bcgr11:ip} that,
414
415
416 \begin{theorem}
417 \label{Th:Caractérisation   des   IC   chaotiques}  
418 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
419 if and only if $\Gamma(f)$ is strongly connected.
420 \end{theorem}
421
422 This result of chaos has lead us to study the possibility to build a
423 pseudorandom number generator (PRNG) based on the chaotic iterations. 
424 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
425 \times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
426 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
427 during implementations (due to the discrete nature of $f$). It is as if
428 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
429 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
430
431 \section{Application to pseudorandomness}
432 \label{sec:pseudorandom}
433 \subsection{A First pseudorandom Number Generator}
434
435 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
436 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
437 leading thus to a new PRNG that improves the statistical properties of each
438 generator taken alone. Furthermore, our generator 
439 possesses various chaos properties that none of the generators used as input
440 present.
441
442 \begin{algorithm}[h!]
443 %\begin{scriptsize}
444 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
445 ($n$ bits)}
446 \KwOut{a configuration $x$ ($n$ bits)}
447 $x\leftarrow x^0$\;
448 $k\leftarrow b + \textit{XORshift}(b)$\;
449 \For{$i=0,\dots,k$}
450 {
451 $s\leftarrow{\textit{XORshift}(n)}$\;
452 $x\leftarrow{F_f(s,x)}$\;
453 }
454 return $x$\;
455 %\end{scriptsize}
456 \caption{PRNG with chaotic functions}
457 \label{CI Algorithm}
458 \end{algorithm}
459
460 \begin{algorithm}[h!]
461 \KwIn{the internal configuration $z$ (a 32-bit word)}
462 \KwOut{$y$ (a 32-bit word)}
463 $z\leftarrow{z\oplus{(z\ll13)}}$\;
464 $z\leftarrow{z\oplus{(z\gg17)}}$\;
465 $z\leftarrow{z\oplus{(z\ll5)}}$\;
466 $y\leftarrow{z}$\;
467 return $y$\;
468 \medskip
469 \caption{An arbitrary round of \textit{XORshift} algorithm}
470 \label{XORshift}
471 \end{algorithm}
472
473
474
475
476
477 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
478 It takes as input: a function $f$;
479 an integer $b$, ensuring that the number of executed iterations is at least $b$
480 and at most $2b+1$; and an initial configuration $x^0$.
481 It returns the new generated configuration $x$.  Internally, it embeds two
482 \textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
483 uniformly distributed
484 into $\llbracket 1 ; k \rrbracket$.
485 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
486 which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
487 with a bit shifted version of it. This PRNG, which has a period of
488 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
489 in our PRNG to compute the strategy length and the strategy elements.
490
491
492 We have proven in \cite{bcgr11:ip} that,
493 \begin{theorem}
494   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
495   iteration graph, $\check{M}$ its adjacency
496   matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
497   If $\Gamma(f)$ is strongly connected, then 
498   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
499   a law that tends to the uniform distribution 
500   if and only if $M$ is a double stochastic matrix.
501 \end{theorem} 
502
503 This former generator as successively passed various batteries of statistical tests, as the NIST tests~\cite{bcgr11:ip}.
504
505 \subsection{Improving the Speed of the Former Generator}
506
507 Instead of updating only one cell at each iteration, we can try to choose a
508 subset of components and to update them together. Such an attempt leads
509 to a kind of merger of the two sequences used in Algorithm 
510 \ref{CI Algorithm}. When the updating function is the vectorial negation,
511 this algorithm can be rewritten as follows:
512
513 \begin{equation}
514 \left\{
515 \begin{array}{l}
516 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
517 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
518 \end{array}
519 \right.
520 \label{equation Oplus}
521 \end{equation}
522 where $\oplus$ is for the bitwise exclusive or between two integers. 
523 This rewritten can be understood as follows. The $n-$th term $S^n$ of the
524 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
525 the list of cells to update in the state $x^n$ of the system (represented
526 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
527 component of this state (a binary digit) changes if and only if the $k-$th 
528 digit in the binary decomposition of $S^n$ is 1.
529
530 The single basic component presented in Eq.~\ref{equation Oplus} is of 
531 ordinary use as a good elementary brick in various PRNGs. It corresponds
532 to the following discrete dynamical system in chaotic iterations:
533
534 \begin{equation}
535 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
536 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
537 \begin{array}{ll}
538   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
539   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
540 \end{array}\right.
541 \label{eq:generalIC}
542 \end{equation}
543 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
544 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
545 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
546 decomposition of $S^n$ is 1. Such chaotic iterations are more general
547 than the ones presented in Definition \ref{Def:chaotic iterations} for 
548 the fact that, instead of updating only one term at each iteration,
549 we select a subset of components to change.
550
551
552 Obviously, replacing Algorithm~\ref{CI Algorithm} by 
553 Equation~\ref{equation Oplus}, possible when the iteration function is
554 the vectorial negation, leads to a speed improvement. However, proofs
555 of chaos obtained in~\cite{bg10:ij} have been established
556 only for chaotic iterations of the form presented in Definition 
557 \ref{Def:chaotic iterations}. The question is now to determine whether the
558 use of more general chaotic iterations to generate pseudorandom numbers 
559 faster, does not deflate their topological chaos properties.
560
561 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
562 \label{deuxième def}
563 Let us consider the discrete dynamical systems in chaotic iterations having 
564 the general form:
565
566 \begin{equation}
567 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
568 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
569 \begin{array}{ll}
570   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
571   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
572 \end{array}\right.
573 \label{general CIs}
574 \end{equation}
575
576 In other words, at the $n^{th}$ iteration, only the cells whose id is
577 contained into the set $S^{n}$ are iterated.
578
579 Let us now rewrite these general chaotic iterations as usual discrete dynamical
580 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
581 is required in order to study the topological behavior of the system.
582
583 Let us introduce the following function:
584 \begin{equation}
585 \begin{array}{cccc}
586  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
587          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
588 \end{array} 
589 \end{equation}
590 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
591
592 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
593 \begin{equation}
594 \begin{array}{lrll}
595 F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
596 \longrightarrow & \mathds{B}^{\mathsf{N}} \\
597 & (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
598 (j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
599 \end{array}%
600 \end{equation}%
601 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
602 is the negation of the Boolean $x$.
603 Consider the phase space:
604 \begin{equation}
605 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
606 \mathds{B}^\mathsf{N},
607 \end{equation}
608 \noindent and the map defined on $\mathcal{X}$:
609 \begin{equation}
610 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
611 \end{equation}
612 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
613 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
614 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
615 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
616 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
617 be described by the following discrete dynamical system:
618 \begin{equation}
619 \left\{
620 \begin{array}{l}
621 X^0 \in \mathcal{X} \\
622 X^{k+1}=G_{f}(X^k).%
623 \end{array}%
624 \right.
625 \end{equation}%
626
627 Another time, a shift function appears as a component of these general chaotic 
628 iterations. 
629
630 To study the Devaney's chaos property, a distance between two points 
631 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
632 Let us introduce:
633 \begin{equation}
634 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
635 \label{nouveau d}
636 \end{equation}
637 \noindent where
638 \begin{equation}
639 \left\{
640 \begin{array}{lll}
641 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
642 }\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
643 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
644 \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
645 \end{array}%
646 \right.
647 \end{equation}
648 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
649 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
650
651
652 \begin{proposition}
653 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
654 \end{proposition}
655
656 \begin{proof}
657  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
658 too, thus $d$ will be a distance as sum of two distances.
659  \begin{itemize}
660 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
661 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
662 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
663  \item $d_s$ is symmetric 
664 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
665 of the symmetric difference. 
666 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
667 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
668 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
669 inequality is obtained.
670  \end{itemize}
671 \end{proof}
672
673
674 Before being able to study the topological behavior of the general 
675 chaotic iterations, we must firstly establish that:
676
677 \begin{proposition}
678  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
679 $\left( \mathcal{X},d\right)$.
680 \end{proposition}
681
682
683 \begin{proof}
684 We use the sequential continuity.
685 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
686 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
687 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
688 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
689 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
690 sequences).\newline
691 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
692 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
693 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
694 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
695 cell will change its state:
696 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
697
698 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
699 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
700 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
701 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
702
703 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
704 identical and strategies $S^n$ and $S$ start with the same first term.\newline
705 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
706 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
707 \noindent We now prove that the distance between $\left(
708 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
709 0. Let $\varepsilon >0$. \medskip
710 \begin{itemize}
711 \item If $\varepsilon \geqslant 1$, we see that distance
712 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
713 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
714 \medskip
715 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
716 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
717 \begin{equation*}
718 \exists n_{2}\in \mathds{N},\forall n\geqslant
719 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
720 \end{equation*}%
721 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
722 \end{itemize}
723 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
724 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
725 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
726 10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline
727 In conclusion,
728 $$
729 \forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}%
730 ,\forall n\geqslant N_{0},
731  d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
732 \leqslant \varepsilon .
733 $$
734 $G_{f}$ is consequently continuous.
735 \end{proof}
736
737
738 It is now possible to study the topological behavior of the general chaotic
739 iterations. We will prove that,
740
741 \begin{theorem}
742 \label{t:chaos des general}
743  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
744 the Devaney's property of chaos.
745 \end{theorem}
746
747 Let us firstly prove the following lemma.
748
749 \begin{lemma}[Strong transitivity]
750 \label{strongTrans}
751  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
752 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
753 \end{lemma}
754
755 \begin{proof}
756  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
757 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
758 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
759 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
760 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
761 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
762 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
763 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
764 \begin{itemize}
765  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
766  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
767 \end{itemize}
768 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
769 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
770 claimed in the lemma.
771 \end{proof}
772
773 We can now prove the Theorem~\ref{t:chaos des general}...
774
775 \begin{proof}[Theorem~\ref{t:chaos des general}]
776 Firstly, strong transitivity implies transitivity.
777
778 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
779 prove that $G_f$ is regular, it is sufficient to prove that
780 there exists a strategy $\tilde S$ such that the distance between
781 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
782 $(\tilde S,E)$ is a periodic point.
783
784 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
785 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
786 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
787 and $t_2\in\mathds{N}$ such
788 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
789
790 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
791 of $S$ and the first $t_2$ terms of $S'$: $$\tilde
792 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
793 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
794 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
795 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
796 have $d((S,E),(\tilde S,E))<\epsilon$.
797 \end{proof}
798
799
800
801 \section{Efficient PRNG based on Chaotic Iterations}
802 \label{sec:efficient prng}
803
804 In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
805 possible to improve  previous works [ref]. One solution  consists in considering
806 that the  strategy used contains all the  bits for which the  negation is
807 achieved out. Then in order to apply  the negation on these bits we can simply
808 apply the  xor operator between  the current number  and the strategy. In
809 order to obtain the strategy we also use a classical PRNG.
810
811 Here  is an  example with  16-bits numbers  showing how  the bitwise  operations
812 are
813 applied.  Suppose  that $x$ and the  strategy $S^i$ are defined  in binary mode.
814 Then the following table shows the result of $x$ xor $S^i$.
815 $$
816 \begin{array}{|cc|cccccccccccccccc|}
817 \hline
818 x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
819 \hline
820 S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
821 \hline
822 x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
823 \hline
824
825 \hline
826  \end{array}
827 $$
828
829
830
831
832
833 \lstset{language=C,caption={C code of the sequential chaotic iterations based
834 PRNG},label=algo:seqCIprng}
835 \begin{lstlisting}
836 unsigned int CIprng() {
837   static unsigned int x = 123123123;
838   unsigned long t1 = xorshift();
839   unsigned long t2 = xor128();
840   unsigned long t3 = xorwow();
841   x = x^(unsigned int)t1;
842   x = x^(unsigned int)(t2>>32);
843   x = x^(unsigned int)(t3>>32);
844   x = x^(unsigned int)t2;
845   x = x^(unsigned int)(t1>>32);
846   x = x^(unsigned int)t3;
847   return x;
848 }
849 \end{lstlisting}
850
851
852
853
854
855 In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
856 based PRNG is  presented.  The xor operator is  represented by \textasciicircum.
857 This  function uses  three classical  64-bits PRNG:  the  \texttt{xorshift}, the
858 \texttt{xor128}  and  the  \texttt{xorwow}.   In  the following,  we  call  them
859 xor-like PRNGSs.   These three PRNGs are  presented in~\cite{Marsaglia2003}.  As
860 each xor-like PRNG  used works with 64-bits and as our  PRNG works with 32-bits,
861 the use of \texttt{(unsigned int)} selects the 32 least significant bits whereas
862 \texttt{(unsigned int)(t3$>>$32)}  selects the 32 most significants  bits of the
863 variable \texttt{t}.   So to produce a  random number realizes  6 xor operations
864 with 6 32-bits  numbers produced by 3 64-bits PRNG.   This version successes the
865 BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
866
867 \section{Efficient PRNGs based on chaotic iterations on GPU}
868 \label{sec:efficient prng gpu}
869
870 In  order to benefit  from computing  power of  GPU, a  program needs  to define
871 independent blocks of threads which  can be computed simultaneously. In general,
872 the larger the number of threads is,  the more local memory is used and the less
873 branching  instructions are  used (if,  while, ...),  the better  performance is
874 obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
875 previous section, it is possible to  build a similar program which computes PRNG
876 on   GPU.  In  the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
877 identificator, called \texttt{ThreadIdx} relative to the block containing them.
878
879
880 \subsection{Naive version for GPU}
881
882 From the CPU version, it is possible  to obtain a quite similar version for GPU.
883 The principe consists in assigning the computation of a PRNG as in sequential to
884 each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
885 PRNGs  used for  our computation  have different  parameters. So  we  chose them
886 randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
887 have  chosen  to  use  the  ISAAC  PRNG~\cite{Jenkins96}  to  initalize  all  the
888 parameters for  the GPU version  of our PRNG.   The implementation of  the three
889 xor-like  PRNGs  is  straightforward  as  soon as  their  parameters  have  been
890 allocated in  the GPU memory.  Each xor-like PRNGs  used works with  an internal
891 number  $x$  which keeps  the  last  generated  random numbers.  Other  internal
892 variables  are   also  used   by  the  xor-like   PRNGs.  More   precisely,  the
893 implementation of the  xor128, the xorshift and the  xorwow respectively require
894 4, 5 and 6 unsigned long as internal variables.
895
896 \begin{algorithm}
897
898 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
899 PRNGs in global memory\;
900 NumThreads: Number of threads\;}
901 \KwOut{NewNb: array containing random numbers in global memory}
902 \If{threadIdx is concerned by the computation} {
903   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
904   \For{i=1 to n} {
905     compute a new PRNG as in Listing\ref{algo:seqCIprng}\;
906     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
907   }
908   store internal variables in InternalVarXorLikeArray[threadIdx]\;
909 }
910
911 \caption{main kernel for the chaotic iterations based PRNG GPU naive version}
912 \label{algo:gpu_kernel}
913 \end{algorithm}
914
915 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of  PRNG using
916 GPU.  According  to the available  memory in the  GPU and the number  of threads
917 used simultenaously,  the number  of random numbers  that a thread  can generate
918 inside   a    kernel   is   limited,   i.e.    the    variable   \texttt{n}   in
919 algorithm~\ref{algo:gpu_kernel}. For example, if  $100,000$ threads are used and
920 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)}
921 then   the  memory   required   to  store   internals   variables  of   xor-like
922 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
923 and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
924 2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb.
925
926 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
927 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
928 upto $10$ millions.
929 \newline
930 \newline
931 {\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
932
933 \begin{remark}
934 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
935 PRNGs, so this version is easily usable on a cluster of computer. The only thing
936 to ensure is to use a single ISAAC PRNG. For this, a simple solution consists in
937 using a master node for the initialization which computes the initial parameters
938 for all the differents nodes involves in the computation.
939 \end{remark}
940
941 \subsection{Improved version for GPU}
942
943 As GPU cards using CUDA have shared memory between threads of the same block, it
944 is possible  to use this  feature in order  to simplify the  previous algorithm,
945 i.e., using less  than 3 xor-like PRNGs. The solution  consists in computing only
946 one xor-like PRNG by thread, saving  it into shared memory and using the results
947 of some  other threads in the  same block of  threads. In order to  define which
948 thread uses the result of which other  one, we can use a permutation array which
949 contains  the indexes  of  all threads  and  for which  a  permutation has  been
950 performed.  In Algorithm~\ref{algo:gpu_kernel2}, 2 permutations arrays are used.
951 The    variable   \texttt{offset}    is    computed   using    the   value    of
952 \texttt{permutation\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
953 which represent the indexes of the  other threads for which the results are used
954 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
955 PRNG is used, that is why both 32-bits parts are used.
956
957 This version also succeeds to the {\it BigCrush} batteries of tests.
958
959 \begin{algorithm}
960
961 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
962 in global memory\;
963 NumThreads: Number of threads\;
964 tab1, tab2: Arrays containing permutations of size permutation\_size\;}
965
966 \KwOut{NewNb: array containing random numbers in global memory}
967 \If{threadId is concerned} {
968   retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
969   offset = threadIdx\%permutation\_size\;
970   o1 = threadIdx-offset+tab1[offset]\;
971   o2 = threadIdx-offset+tab2[offset]\;
972   \For{i=1 to n} {
973     t=xor-like()\;
974     t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\;
975     shared\_mem[threadId]=t\;
976     x = x $\oplus$ t\;
977
978     store the new PRNG in NewNb[NumThreads*threadId+i]\;
979   }
980   store internal variables in InternalVarXorLikeArray[threadId]\;
981 }
982
983 \caption{main kernel for the chaotic iterations based PRNG GPU efficient
984 version}
985 \label{algo:gpu_kernel2}
986 \end{algorithm}
987
988 \subsection{Theoretical Evaluation of the Improved Version}
989
990 A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having 
991 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
992 system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
993 iterations are realized between two stored values of the PRNG.
994 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
995 we must guarantee that this dynamical system iterates on the space 
996 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
997 The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
998 To prevent from any flaws of chaotic properties, we must check that each right 
999 term, corresponding to terms of the strategies,  can possibly be equal to any
1000 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1001
1002 Such a result is obvious for the two first lines, as for the xor-like(), all the
1003 integers belonging into its interval of definition can occur at each iteration.
1004 It can be easily stated for the two last lines by an immediate mathematical
1005 induction.
1006
1007 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1008 chaotic iterations presented previously, and for this reason, it satisfies the 
1009 Devaney's formulation of a chaotic behavior.
1010
1011 \section{Experiments}
1012 \label{sec:experiments}
1013
1014 Different experiments  have been  performed in order  to measure  the generation
1015 speed. We have used  a computer equiped with Tesla C1060 NVidia  GPU card and an
1016 Intel  Xeon E5530 cadenced  at 2.40  GHz for  our experiments  and we  have used
1017 another one  equipped with  a less performant  CPU and  a GeForce GTX  280. Both
1018 cards have 240 cores.
1019
1020 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  number of  random numbers
1021 generated per second with the xor-like based PRNG. In this figure, the optimized
1022 version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
1023 use  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIprng}.   In
1024 order to obtain the optimal performance we removed the storage of random numbers
1025 in the GPU memory. This step is time consuming and slows down the random numbers
1026 generation.  Moreover, if one is  interested by applications that consume random
1027 numbers  directly   when  they  are  generated,  their   storage  are  completely
1028 useless. In this  figure we can see  that when the number of  threads is greater
1029 than approximately 30,000 upto 5 millions the number of random numbers generated
1030 per second  is almost constant.  With the  naive version, it is  between 2.5 and
1031 3GSample/s.   With  the  optimized   version,  it  is  approximately  equals  to
1032 20GSample/s. Finally  we can remark  that both GPU  cards are quite  similar. In
1033 practice,  the Tesla C1060  has more  memory than  the GTX  280 and  this memory
1034 should be of better quality.
1035
1036 \begin{figure}[htbp]
1037 \begin{center}
1038   \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
1039 \end{center}
1040 \caption{Number of random numbers generated per second with the xorlike based PRNG}
1041 \label{fig:time_xorlike_gpu}
1042 \end{figure}
1043
1044
1045 In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
1046 138MSample/s with only one core of the Xeon E5530.
1047
1048
1049 In Figure~\ref{fig:time_bbs_gpu}  we highlight the performance  of the optimized
1050 BBS based  PRNG on GPU. Performances are  less important. On the  Tesla C1060 we
1051 obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
1052
1053 \begin{figure}[htbp]
1054 \begin{center}
1055   \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
1056 \end{center}
1057 \caption{Number of random numbers generated per second with the BBS based PRNG}
1058 \label{fig:time_bbs_gpu}
1059 \end{figure}
1060
1061 Both  these  experimentations allows  us  to conclude  that  it  is possible  to
1062 generate a  huge number of pseudorandom  numbers with the  xor-like version and
1063 about tens  times less with the BBS  based version. The former  version has only
1064 chaotic properties whereas the latter also has cryptographically properties.
1065
1066
1067 %% \section{Cryptanalysis of the Proposed PRNG}
1068
1069
1070 %% Mettre ici la preuve de PCH
1071
1072 %\section{The relativity of disorder}
1073 %\label{sec:de la relativité du désordre}
1074
1075 %In the next two sections, we investigate the impact of the choices that have
1076 %lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
1077
1078 %\subsection{Impact of the topology's finenesse}
1079
1080 %Let us firstly introduce the following notations.
1081
1082 %\begin{notation}
1083 %$\mathcal{X}_\tau$ will denote the topological space
1084 %$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
1085 %of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
1086 %$\mathcal{V} (x)$, if there is no ambiguity).
1087 %\end{notation}
1088
1089
1090
1091 %\begin{theorem}
1092 %\label{Th:chaos et finesse}
1093 %Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
1094 %$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
1095 %both for $\tau$ and $\tau'$.
1096
1097 %If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
1098 %$(\mathcal{X}_\tau,f)$ is chaotic too.
1099 %\end{theorem}
1100
1101 %\begin{proof}
1102 %Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
1103
1104 %Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
1105 %\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
1106 %can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
1107 %\varnothing$. Consequently, $f$ is $\tau-$transitive.
1108
1109 %Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
1110 %all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
1111 %periodic point for $f$ into $V$.
1112
1113 %Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
1114 %of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
1115
1116 %But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
1117 %\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
1118 %periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
1119 %proven. 
1120 %\end{proof}
1121
1122 %\subsection{A given system can always be claimed as chaotic}
1123
1124 %Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
1125 %Then this function is chaotic (in a certain way):
1126
1127 %\begin{theorem}
1128 %Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
1129 %at least a fixed point.
1130 %Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
1131 %topology on $\X$.
1132 %\end{theorem}
1133
1134
1135 %\begin{proof}
1136 %$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
1137 %\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
1138 %\varnothing$.
1139 %As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
1140 %an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
1141 %instance, $n=0$ is appropriate.
1142
1143 %Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
1144 %\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
1145 %regular, and the result is established.
1146 %\end{proof}
1147
1148
1149
1150
1151 %\subsection{A given system can always be claimed as non-chaotic}
1152
1153 %\begin{theorem}
1154 %Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
1155 %If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
1156 %(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
1157 %\end{theorem}
1158
1159 %\begin{proof}
1160 %Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
1161 %f\right)$ is both transitive and regular.
1162
1163 %Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
1164 %contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
1165 %f\right)$ is regular. Then $x$ must be a periodic point of $f$.
1166
1167 %Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
1168 %because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
1169 %\mathcal{X}, y \notin I_x$.
1170
1171 %As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
1172 %sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
1173 %\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
1174 %\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
1175 %\end{proof}
1176
1177
1178
1179
1180
1181
1182 %\section{Chaos on the order topology}
1183 %\label{sec: chaos order topology}
1184 %\subsection{The phase space is an interval of the real line}
1185
1186 %\subsubsection{Toward a topological semiconjugacy}
1187
1188 %In what follows, our intention is to establish, by using a topological
1189 %semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
1190 %iterations on a real interval. To do so, we must firstly introduce some
1191 %notations and terminologies. 
1192
1193 %Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
1194 %1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
1195 %\times \B^\mathsf{N}$.
1196
1197
1198 %\begin{definition}
1199 %The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
1200 %0, 2^{10} \big[$ is defined by:
1201 %\begin{equation}
1202 % \begin{array}{cccl}
1203 %\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
1204 %\longrightarrow & \big[ 0, 2^{10} \big[ \\
1205 % & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
1206 %\varphi \left((S,E)\right)
1207 %\end{array}
1208 %\end{equation}
1209 %where $\varphi\left((S,E)\right)$ is the real number:
1210 %\begin{itemize}
1211 %\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
1212 %is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
1213 %\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
1214 %\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
1215 %\end{itemize}
1216 %\end{definition}
1217
1218
1219
1220 %$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
1221 %real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
1222 %iterations $\Go$ on this real interval. To do so, two intermediate functions
1223 %over $\big[ 0, 2^{10} \big[$ must be introduced:
1224
1225
1226 %\begin{definition}
1227 %\label{def:e et s}
1228 %Let $x \in \big[ 0, 2^{10} \big[$ and:
1229 %\begin{itemize}
1230 %\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
1231 %$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
1232 %\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
1233 %decomposition of $x$ is the one that does not have an infinite number of 9: 
1234 %$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
1235 %\end{itemize}
1236 %$e$ and $s$ are thus defined as follows:
1237 %\begin{equation}
1238 %\begin{array}{cccl}
1239 %e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
1240 % & x & \longmapsto & (e_0, \hdots, e_9)
1241 %\end{array}
1242 %\end{equation}
1243 %and
1244 %\begin{equation}
1245 % \begin{array}{cccc}
1246 %s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
1247 %\rrbracket^{\mathds{N}} \\
1248 % & x & \longmapsto & (s^k)_{k \in \mathds{N}}
1249 %\end{array}
1250 %\end{equation}
1251 %\end{definition}
1252
1253 %We are now able to define the function $g$, whose goal is to translate the
1254 %chaotic iterations $\Go$ on an interval of $\mathds{R}$.
1255
1256 %\begin{definition}
1257 %$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
1258 %\begin{equation}
1259 %\begin{array}{cccc}
1260 %g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
1261 % & x & \longmapsto & g(x)
1262 %\end{array}
1263 %\end{equation}
1264 %where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
1265 %\begin{itemize}
1266 %\item its integral part has a binary decomposition equal to $e_0', \hdots,
1267 %e_9'$, with:
1268 % \begin{equation}
1269 %e_i' = \left\{
1270 %\begin{array}{ll}
1271 %e(x)_i & \textrm{ if } i \neq s^0\\
1272 %e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
1273 %\end{array}
1274 %\right.
1275 %\end{equation}
1276 %\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
1277 %\end{itemize}
1278 %\end{definition}
1279
1280 %\bigskip
1281
1282
1283 %In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
1284 %\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
1285 %\begin{equation}
1286 %g(x) =
1287 %\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
1288 %\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
1289 %\end{equation}
1290
1291
1292 %\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
1293
1294 %Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
1295 %usual one being the Euclidian distance recalled bellow:
1296
1297 %\begin{notation}
1298 %\index{distance!euclidienne}
1299 %$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
1300 %$\Delta(x,y) = |y-x|^2$.
1301 %\end{notation}
1302
1303 %\medskip
1304
1305 %This Euclidian distance does not reproduce exactly the notion of proximity
1306 %induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
1307 %This is the reason why we have to introduce the following metric:
1308
1309
1310
1311 %\begin{definition}
1312 %Let $x,y \in \big[ 0, 2^{10} \big[$.
1313 %$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
1314 %defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
1315 %where:
1316 %\begin{center}
1317 %$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
1318 %\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
1319 %\dfrac{|S^k-\check{S}^k|}{10^k}}$.
1320 %\end{center}
1321 %\end{definition}
1322
1323 %\begin{proposition}
1324 %$D$ is a distance on $\big[ 0, 2^{10} \big[$.
1325 %\end{proposition}
1326
1327 %\begin{proof}
1328 %The three axioms defining a distance must be checked.
1329 %\begin{itemize}
1330 %\item $D \geqslant 0$, because everything is positive in its definition. If
1331 %$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
1332 %(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
1333 %$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
1334 %the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
1335 %\item $D(x,y)=D(y,x)$.
1336 %\item Finally, the triangular inequality is obtained due to the fact that both
1337 %$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
1338 %\end{itemize}
1339 %\end{proof}
1340
1341
1342 %The convergence of sequences according to $D$ is not the same than the usual
1343 %convergence related to the Euclidian metric. For instance, if $x^n \to x$
1344 %according to $D$, then necessarily the integral part of each $x^n$ is equal to
1345 %the integral part of $x$ (at least after a given threshold), and the decimal
1346 %part of $x^n$ corresponds to the one of $x$ ``as far as required''.
1347 %To illustrate this fact, a comparison between $D$ and the Euclidian distance is
1348 %given Figure \ref{fig:comparaison de distances}. These illustrations show that
1349 %$D$ is richer and more refined than the Euclidian distance, and thus is more
1350 %precise.
1351
1352
1353 %\begin{figure}[t]
1354 %\begin{center}
1355 %  \subfigure[Function $x \to dist(x;1,234) $ on the interval
1356 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
1357 %  \subfigure[Function $x \to dist(x;3) $ on the interval
1358 %$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
1359 %\end{center}
1360 %\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
1361 %\label{fig:comparaison de distances}
1362 %\end{figure}
1363
1364
1365
1366
1367 %\subsubsection{The semiconjugacy}
1368
1369 %It is now possible to define a topological semiconjugacy between $\mathcal{X}$
1370 %and an interval of $\mathds{R}$:
1371
1372 %\begin{theorem}
1373 %Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
1374 %$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
1375 %\begin{equation*}
1376 %\begin{CD}
1377 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
1378 %\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
1379 %    @V{\varphi}VV                    @VV{\varphi}V\\
1380 %\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
1381 %D~\right)
1382 %\end{CD}
1383 %\end{equation*}
1384 %\end{theorem}
1385
1386 %\begin{proof}
1387 %$\varphi$ has been constructed in order to be continuous and onto.
1388 %\end{proof}
1389
1390 %In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
1391 %\big[$.
1392
1393
1394
1395
1396
1397
1398 %\subsection{Study of the chaotic iterations described as a real function}
1399
1400
1401 %\begin{figure}[t]
1402 %\begin{center}
1403 %  \subfigure[ICs on the interval
1404 %$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
1405 %  \subfigure[ICs on the interval
1406 %$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
1407 %  \subfigure[ICs on the interval
1408 %$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
1409 %  \subfigure[ICs on the interval
1410 %$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
1411 %\end{center}
1412 %\caption{Representation of the chaotic iterations.}
1413 %\label{fig:ICs}
1414 %\end{figure}
1415
1416
1417
1418
1419 %\begin{figure}[t]
1420 %\begin{center}
1421 %  \subfigure[ICs on the interval
1422 %$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
1423 %  \subfigure[ICs on the interval
1424 %$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
1425 %\end{center}
1426 %\caption{ICs on small intervals.}
1427 %\label{fig:ICs2}
1428 %\end{figure}
1429
1430 %\begin{figure}[t]
1431 %\begin{center}
1432 %  \subfigure[ICs on the interval
1433 %$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
1434 %  \subfigure[ICs on the interval 
1435 %$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
1436 %\end{center}
1437 %\caption{General aspect of the chaotic iterations.}
1438 %\label{fig:ICs3}
1439 %\end{figure}
1440
1441
1442 %We have written a Python program to represent the chaotic iterations with the
1443 %vectorial negation on the real line $\mathds{R}$. Various representations of
1444 %these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
1445 %It can be remarked that the function $g$ is a piecewise linear function: it is
1446 %linear on each interval having the form $\left[ \dfrac{n}{10},
1447 %\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
1448 %slope is equal to 10. Let us justify these claims:
1449
1450 %\begin{proposition}
1451 %\label{Prop:derivabilite des ICs}
1452 %Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
1453 %$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
1454 %\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
1455
1456 %Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
1457 %\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
1458 %$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
1459 %g'(x)=10$.
1460 %\end{proposition}
1461
1462
1463 %\begin{proof}
1464 %Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
1465 %0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
1466 %prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
1467 %and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
1468 %the images $g(x)$ of these points $x$:
1469 %\begin{itemize}
1470 %\item Have the same integral part, which is $e$, except probably the bit number
1471 %$s^0$. In other words, this integer has approximately the same binary
1472 %decomposition than $e$, the sole exception being the digit $s^0$ (this number is
1473 %then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
1474 %\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
1475 %\item A shift to the left has been applied to the decimal part $y$, losing by
1476 %doing so the common first digit $s^0$. In other words, $y$ has been mapped into
1477 %$10\times y - s^0$.
1478 %\end{itemize}
1479 %To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
1480 %multiplication by 10, and second, add the same constant to each term, which is
1481 %$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
1482 %\end{proof}
1483
1484 %\begin{remark}
1485 %Finally, chaotic iterations are elements of the large family of functions that
1486 %are both chaotic and piecewise linear (like the tent map).
1487 %\end{remark}
1488
1489
1490
1491 %\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
1492
1493 %The two propositions bellow allow to compare our two distances on $\big[ 0,
1494 %2^\mathsf{N} \big[$:
1495
1496 %\begin{proposition}
1497 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
1498 %2^\mathsf{N} \big[, D~\right)$ is not continuous. 
1499 %\end{proposition}
1500
1501 %\begin{proof}
1502 %The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
1503 %such that:
1504 %\begin{itemize}
1505 %\item $\Delta (x^n,2) \to 0.$
1506 %\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
1507 %\end{itemize}
1508
1509 %The sequential characterization of the continuity concludes the demonstration.
1510 %\end{proof}
1511
1512
1513
1514 %A contrario:
1515
1516 %\begin{proposition}
1517 %Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
1518 %2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
1519 %\end{proposition}
1520
1521 %\begin{proof}
1522 %If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
1523 %threshold, because $D_e$ only returns integers. So, after this threshold, the
1524 %integral parts of all the $x^n$ are equal to the integral part of $x$. 
1525
1526 %Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
1527 %\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
1528 %means that for all $k$, an index $N_k$ can be found such that, $\forall n
1529 %\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
1530 %digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
1531 %result.
1532 %\end{proof}
1533
1534 %The conclusion of these propositions is that the proposed metric is more precise
1535 %than the Euclidian distance, that is:
1536
1537 %\begin{corollary}
1538 %$D$ is finer than the Euclidian distance $\Delta$.
1539 %\end{corollary}
1540
1541 %This corollary can be reformulated as follows:
1542
1543 %\begin{itemize}
1544 %\item The topology produced by $\Delta$ is a subset of the topology produced by
1545 %$D$.
1546 %\item $D$ has more open sets than $\Delta$.
1547 %\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
1548 %to converge with the one inherited by $\Delta$, which is denoted here by
1549 %$\tau_\Delta$.
1550 %\end{itemize}
1551
1552
1553 %\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
1554 %\label{chpt:Chaos des itérations chaotiques sur R}
1555
1556
1557
1558 %\subsubsection{Chaos according to Devaney}
1559
1560 %We have recalled previously that the chaotic iterations $\left(\Go,
1561 %\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
1562 %can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
1563 %topology, because:
1564 %\begin{itemize}
1565 %\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
1566 %\big[_D\right)$ are semiconjugate by $\varphi$,
1567 %\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
1568 %according to Devaney, because the semiconjugacy preserve this character.
1569 %\item But the topology generated by $D$ is finer than the topology generated by
1570 %the Euclidian distance $\Delta$ -- which is the order topology.
1571 %\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
1572 %chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
1573 %topology on $\mathds{R}$.
1574 %\end{itemize}
1575
1576 %This result can be formulated as follows.
1577
1578 %\begin{theorem}
1579 %\label{th:IC et topologie de l'ordre}
1580 %The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
1581 %Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
1582 %order topology.
1583 %\end{theorem}
1584
1585 %Indeed this result is weaker than the theorem establishing the chaos for the
1586 %finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
1587 %still remains important. Indeed, we have studied in our previous works a set
1588 %different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
1589 %in order to be as close as possible from the computer: the properties of
1590 %disorder proved theoretically will then be preserved when computing. However, we
1591 %could wonder whether this change does not lead to a disorder of a lower quality.
1592 %In other words, have we replaced a situation of a good disorder lost when
1593 %computing, to another situation of a disorder preserved but of bad quality.
1594 %Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
1595
1596
1597
1598
1599
1600
1601
1602 \section{Security Analysis}
1603 \label{sec:security analysis}
1604
1605
1606
1607 In this section the concatenation of two strings $u$ and $v$ is classically
1608 denoted by $uv$.
1609 In a cryptographic context, a pseudorandom generator is a deterministic
1610 algorithm $G$ transforming strings  into strings and such that, for any
1611 seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
1612 $\ell_G(N)$ with $\ell_G(N)>N$.
1613 The notion of {\it secure} PRNGs can now be defined as follows. 
1614
1615 \begin{definition}
1616 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1617 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1618 large $k$'s,
1619 $$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
1620 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1621 probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
1622 internal coin tosses of $D$. 
1623 \end{definition}
1624
1625 Intuitively, it means that there is no polynomial time algorithm that can
1626 distinguish a perfect uniform random generator from $G$ with a non
1627 negligible probability. The interested reader is referred
1628 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
1629 quite easily possible to change the function $\ell$ into any polynomial
1630 function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
1631
1632 The generation schema developed in (\ref{equation Oplus}) is based on a
1633 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1634 without loss of generality, that for any string $S_0$ of size $N$, the size
1635 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1636 Let $S_1,\ldots,S_k$ be the 
1637 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1638 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1639 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1640 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1641 (x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1642 We claim now that if this PRNG is secure,
1643 then the new one is secure too.
1644
1645 \begin{proposition}
1646 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1647 PRNG too.
1648 \end{proposition}
1649
1650 \begin{proof}
1651 The proposition is proved by contraposition. Assume that $X$ is not
1652 secure. By Definition, there exists a polynomial time probabilistic
1653 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1654 $N\geq \frac{k_0}{2}$ satisfying 
1655 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1656 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1657 $kN$:
1658 \begin{enumerate}
1659 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1660 \item Pick a string $y$ of size $N$ uniformly at random.
1661 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1662   \bigoplus_{i=1}^{i=k} w_i).$
1663 \item Return $D(z)$.
1664 \end{enumerate}
1665
1666
1667 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1668 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1669 (each $w_i$ has length $N$) to 
1670 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1671   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1672 \begin{equation}\label{PCH-1}
1673 D^\prime(w)=D(\varphi_y(w)),
1674 \end{equation}
1675 where $y$ is randomly generated. 
1676 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1677 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1678 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1679 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1680 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1681 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1682 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1683 one has
1684 \begin{equation}\label{PCH-2}
1685 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
1686 \end{equation}
1687
1688 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1689 \begin{equation}\label{PCH-3}
1690 D^\prime(H(x))=D(\varphi_y(H(x))),
1691 \end{equation}
1692 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1693 thus
1694 \begin{equation}\label{PCH-3}
1695 D^\prime(H(x))=D(yx),
1696 \end{equation}
1697 where $y$ is randomly generated. 
1698 It follows that 
1699
1700 \begin{equation}\label{PCH-4}
1701 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1702 \end{equation}
1703  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1704 there exist a polynomial time probabilistic
1705 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1706 $N\geq \frac{k_0}{2}$ satisfying 
1707 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1708 proving that $H$ is not secure, a contradiction. 
1709 \end{proof}
1710
1711
1712
1713
1714 \section{A cryptographically secure prng for GPU}
1715 \label{sec:CSGPU}
1716 It is  possible to build a  cryptographically secure prng based  on the previous
1717 algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
1718 the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
1719 practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
1720 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
1721 prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
1722 known to  be slow and  not efficient for  the generation of random  numbers. For
1723 current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
1724 operation. So in  order to obtain quite reasonable  performances, it is required
1725 to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
1726 less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
1727 pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
1728 4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
1729 chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
1730 $log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
1731 the BBS algorithm, with different combinations of $M$ is required.
1732
1733 Currently this PRNG does not succeed to pass all the tests of TestU01.
1734
1735
1736 \section{Conclusion}
1737
1738
1739 In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
1740 iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
1741 We also propose a PRNG cryptographically secure and its implementation on GPU.
1742
1743 An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
1744 generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
1745 20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
1746
1747 In future  work we plan to  extend this work  for parallel PRNG for  clusters or
1748 grid computing. We also plan to improve  the BBS version in order to succeed all
1749 the tests of TestU01.
1750
1751
1752
1753 \bibliographystyle{plain} 
1754 \bibliography{mabase}
1755 \end{document}