1 \documentclass{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
10 \usepackage[standard]{ntheorem}
12 % Pour mathds : les ensembles IR, IN, etc.
15 % Pour avoir des intervalles d'entiers
19 % Pour faire des sous-figures dans les figures
20 \usepackage{subfigure}
22 \newtheorem{notation}{Notation}
24 \newcommand{\X}{\mathcal{X}}
25 \newcommand{\Go}{G_{f_0}}
26 \newcommand{\B}{\mathds{B}}
27 \newcommand{\N}{\mathds{N}}
28 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
32 \title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU}
40 \section{Introduction}
42 Interet des itérations chaotiques pour générer des nombre alea\\
43 Interet de générer des nombres alea sur GPU
46 \section{Chaotic iterations}
48 Présentation des itérations chaotiques
52 \section{The phase space is an interval of the real line}
54 \subsection{Toward a topological semiconjugacy}
56 In what follows, our intention is to establish, by using a topological semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as iterations on a real interval. To do so, we must firstly introduce some notations and terminologies.
58 Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket 1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N} \times \B^\mathsf{N}$.
62 The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[ 0, 2^{10} \big[$ is defined by:
65 \varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}& \longrightarrow & \big[ 0, 2^{10} \big[ \\
66 & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto & \varphi \left((S,E)\right)
69 \noindent where $\varphi\left((S,E)\right)$ is the real number:
71 \item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
72 \item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots = \sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$
78 $\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic iterations $\Go$ on this real interval. To do so, two intermediate functions over $\big[ 0, 2^{10} \big[$ must be introduced:
83 Let $x \in \big[ 0, 2^{10} \big[$ and:
85 \item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$: $\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
86 \item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal decomposition of $x$ is the one that does not have an infinite number of 9:
87 $\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
89 $e$ and $s$ are thus defined as follows:
92 e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
93 & x & \longmapsto & (e_0, \hdots, e_9)
99 s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9 \rrbracket^{\mathds{N}} \\
100 & x & \longmapsto & (s^k)_{k \in \mathds{N}}
105 We are now able to define the function $g$, whose goal is to translate the chaotic iterations $\Go$ on an interval of $\mathds{R}$.
108 $g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
111 g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
113 & x & \longmapsto & g(x)
116 \noindent where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
118 \item its integral part has a binary decomposition equal to $e_0', \hdots, e_9'$, with:
122 e(x)_i & \textrm{ if } i \neq s^0\\
123 e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
127 \item whose decimal part is $s(x)^1, s(x)^2, \hdots$
134 In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + \sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then: $$g(x) = \displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + \sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}.$$
136 \subsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
138 Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most usual one being the Euclidian distance recalled bellow:
141 \index{distance!euclidienne}
142 $\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is, $\Delta(x,y) = |y-x|^2$.
147 This Euclidian distance does not reproduce exactly the notion of proximity induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$. This is the reason why we have to introduce the following metric:
152 Let $x,y \in \big[ 0, 2^{10} \big[$.
153 $D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$ defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$, where:
155 $\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k, \check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty \dfrac{|S^k-\check{S}^k|}{10^k}}$.
160 $D$ is a distance on $\big[ 0, 2^{10} \big[$.
164 The three axioms defining a distance must be checked.
166 \item $D \geqslant 0$, because everything is positive in its definition. If $D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal (they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then $\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
167 \item $D(x,y)=D(y,x)$.
168 \item Finally, the triangular inequality is obtained due to the fact that both $\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
173 The convergence of sequences according to $D$ is not the same than the usual convergence related to the Euclidian metric. For instance, if $x^n \to x$ according to $D$, then necessarily the integral part of each $x^n$ is equal to the integral part of $x$ (at least after a given threshold), and the decimal part of $x^n$ corresponds to the one of $x$ ``as far as required''.
174 To illustrate this fact, a comparison between $D$ and the Euclidian distance is given Figure \ref{fig:comparaison de distances}. These illustrations show that $D$ is richer and more refined than the Euclidian distance, and thus is more precise.
179 \subfigure[Function $x \to dist(x;1,234) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
180 \subfigure[Function $x \to dist(x;3) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
182 \caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
183 \label{fig:comparaison de distances}
189 \subsection{The semiconjugacy}
191 It is now possible to define a topological semiconjugacy between $\mathcal{X}$ and an interval of $\mathds{R}$:
194 Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on $\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
197 \left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>> \left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
198 @V{\varphi}VV @VV{\varphi}V\\
199 \left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[, D~\right)
205 $\varphi$ has been constructed in order to be continuous and onto.
208 In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \big[$.
213 \section{Efficient prng based on chaotic iterations}
215 On parle du séquentiel avec des nombres 64 bits\\
217 Faire le lien avec le paragraphe précédent (je considère que la stratégie s'appelle $S^i$\\
219 In order to implement efficiently a PRNG based on chaotic iterations it is
220 possible to improve previous works [ref]. One solution consists in considering
221 that the strategy used $S^i$ contains all the bits for which the negation is
222 achieved out. Then instead of applying the negation on these bits we can simply
223 apply the xor operator between the current number and the strategy $S^i$. In
224 order to obtain the strategy we also use a classical PRNG.
229 \begin{minipage}{14cm}
230 unsigned int CIprng() \{\\
231 static unsigned int x = 123123123;\\
232 unsigned long t1 = xorshift();\\
233 unsigned long t2 = xor128();\\
234 unsigned long t3 = xorwow();\\
235 x = x\textasciicircum (unsigned int)t1;\\
236 x = x\textasciicircum (unsigned int)(t2$>>$32);\\
237 x = x\textasciicircum (unsigned int)(t3$>>$32);\\
238 x = x\textasciicircum (unsigned int)t2;\\
239 x = x\textasciicircum (unsigned int)(t1$>>$32);\\
240 x = x\textasciicircum (unsigned int)t3;\\
246 \caption{sequential Chaotic Iteration PRNG}
247 \label{algo:seqCIprng}
250 In Figure~\ref{algo:seqCIprng} a sequential version of our chaotic iterations
251 based PRNG is presented. This version uses three classical 64 bits PRNG: the
252 \texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. These three
253 PRNGs are presented in~\cite{Marsaglia2003}. As each PRNG used works with
254 64-bits and as our PRNG works with 32 bits, the use of \texttt{(unsigned int)}
255 selects the 32 least significant bits whereas \texttt{(unsigned int)(t3$>>$32)}
256 selects the 32 most significants bits of the variable \texttt{t}. This version
257 sucesses the BigCrush of the TestU01 battery [P. L’ecuyer and
260 \section{Efficient prng based on chaotic iterations on GPU}
262 On parle du passage du sequentiel au GPU
264 \section{Experiments}
266 On passe le BigCrush\\
267 On donne des temps de générations sur GPU/CPU\\
268 On donne des temps de générations de nombre sur GPU puis on rappatrie sur CPU / CPU ? bof bof, on verra
272 \bibliographystyle{plain}
273 \bibliography{mabase}