]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Nettoyage
[prng_gpu.git] / prng_gpu.tex
1 %\documentclass{article}
2 \documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
3 \usepackage[utf8]{inputenc}
4 \usepackage[T1]{fontenc}
5 \usepackage{fullpage}
6 \usepackage{fancybox}
7 \usepackage{amsmath}
8 \usepackage{amscd}
9 \usepackage{moreverb}
10 \usepackage{commath}
11 \usepackage[ruled,vlined]{algorithm2e}
12 \usepackage{listings}
13 \usepackage[standard]{ntheorem}
14 \usepackage{algorithmic}
15 \usepackage{slashbox}
16
17 % Pour mathds : les ensembles IR, IN, etc.
18 \usepackage{dsfont}
19
20 % Pour avoir des intervalles d'entiers
21 \usepackage{stmaryrd}
22
23 \usepackage{graphicx}
24 % Pour faire des sous-figures dans les figures
25 \usepackage{subfigure}
26
27 \usepackage{color}
28
29 \newtheorem{notation}{Notation}
30
31 \newcommand{\X}{\mathcal{X}}
32 \newcommand{\Go}{G_{f_0}}
33 \newcommand{\B}{\mathds{B}}
34 \newcommand{\N}{\mathds{N}}
35 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
36 \let\sur=\overline
37
38 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
39
40 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
41 \begin{document}
42
43 \author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
44 Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
45    
46
47 \IEEEcompsoctitleabstractindextext{
48 \begin{abstract}
49 In this paper we present a new pseudorandom number generator (PRNG) on
50 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
51 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
52 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
53 battery of tests in TestU01.  Experiments show that this PRNG can generate
54 about 20 billion of random numbers  per second on Tesla C1060 and NVidia GTX280
55 cards.
56 It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
57 secure.
58 A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.
59
60
61 \end{abstract}
62 }
63
64 \maketitle
65
66 \IEEEdisplaynotcompsoctitleabstractindextext
67 \IEEEpeerreviewmaketitle
68
69
70 \section{Introduction}
71
72 Randomness is of importance in many fields such as scientific simulations or cryptography. 
73 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
74 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
75 process having all the characteristics of a random noise, called a truly random number
76 generator (TRNG). 
77 In this paper, we focus on reproducible generators, useful for instance in
78 Monte-Carlo based simulators or in several cryptographic schemes.
79 These domains need PRNGs that are statistically irreproachable. 
80 In some fields such as in numerical simulations, speed is a strong requirement
81 that is usually attained by using parallel architectures. In that case,
82 a recurrent problem is that a deflation of the statistical qualities is often
83 reported, when the parallelization of a good PRNG is realized.
84 This is why ad-hoc PRNGs for each possible architecture must be found to
85 achieve both speed and randomness.
86 On the other side, speed is not the main requirement in cryptography: the great
87 need is to define \emph{secure} generators able to withstand malicious
88 attacks. Roughly speaking, an attacker should not be able in practice to make 
89 the distinction between numbers obtained with the secure generator and a true random
90 sequence. 
91 Finally, a small part of the community working in this domain focuses on a
92 third requirement, that is to define chaotic generators.
93 The main idea is to take benefits from a chaotic dynamical system to obtain a
94 generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic.
95 Their desire is to map a given chaotic dynamics into a sequence that seems random 
96 and unassailable due to chaos.
97 However, the chaotic maps used as a pattern are defined in the real line 
98 whereas computers deal with finite precision numbers.
99 This distortion leads to a deflation of both chaotic properties and speed.
100 Furthermore, authors of such chaotic generators often claim their PRNG
101 as secure due to their chaos properties, but there is no obvious relation
102 between chaos and security as it is understood in cryptography.
103 This is why the use of chaos for PRNG still remains marginal and disputable.
104
105 The authors' opinion is that topological properties of disorder, as they are
106 properly defined in the mathematical theory of chaos, can reinforce the quality
107 of a PRNG. But they are not substitutable for security or statistical perfection.
108 Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
109 one hand, a post-treatment based on a chaotic dynamical system can be applied
110 to a PRNG statistically deflective, in order to improve its statistical 
111 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
112 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
113 cryptographically secure one, in case where chaos can be of interest,
114 \emph{only if these last properties are not lost during
115 the proposed post-treatment}. Such an assumption is behind this research work.
116 It leads to the attempts to define a 
117 family of PRNGs that are chaotic while being fast and statistically perfect,
118 or cryptographically secure.
119 Let us finish this paragraph by noticing that, in this paper, 
120 statistical perfection refers to the ability to pass the whole 
121 {\it BigCrush} battery of tests, which is widely considered as the most
122 stringent statistical evaluation of a sequence claimed as random.
123 This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
124 Chaos, for its part, refers to the well-established definition of a
125 chaotic dynamical system proposed by Devaney~\cite{Devaney}.
126
127
128 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
129 as a chaotic dynamical system. Such a post-treatment leads to a new category of
130 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
131 family, and that the sequence obtained after this post-treatment can pass the
132 NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
133 cannot.
134 The proposition of this paper is to improve widely the speed of the formerly
135 proposed generator, without any lack of chaos or statistical properties.
136 In particular, a version of this PRNG on graphics processing units (GPU)
137 is proposed.
138 Although GPU was initially designed  to accelerate
139 the manipulation of  images, they are nowadays commonly  used in many scientific
140 applications. Therefore,  it is important  to be able to  generate pseudorandom
141 numbers inside a GPU when a scientific application runs in it. This remark
142 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
143 Such device
144 allows us to generate almost 20 billion of pseudorandom numbers per second.
145 Furthermore, we show that the proposed post-treatment preserves the
146 cryptographical security of the inputted PRNG, when this last has such a 
147 property.
148 Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
149 key encryption protocol by using the proposed method.
150
151 The remainder of this paper  is organized as follows. In Section~\ref{section:related
152   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
153   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
154   and on an iteration process called ``chaotic
155 iterations'' on which the post-treatment is based. 
156 The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
157 Section~\ref{sec:efficient    PRNG}   presents   an   efficient
158 implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient PRNG
159   gpu}   describes and evaluates theoretically  the  GPU   implementation. 
160 Such generators are experimented in 
161 Section~\ref{sec:experiments}.
162 We show in Section~\ref{sec:security analysis} that, if the inputted
163 generator is cryptographically secure, then it is the case too for the
164 generator provided by the post-treatment.
165 Such a proof leads to the proposition of a cryptographically secure and
166 chaotic generator on GPU based on the famous Blum Blum Shub
167 in Section~\ref{sec:CSGPU}, and to an improvement of the
168 Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
169 This research work ends by a conclusion section, in which the contribution is
170 summarized and intended future work is presented.
171
172
173
174
175 \section{Related works on GPU based PRNGs}
176 \label{section:related works}
177
178 Numerous research works on defining GPU based PRNGs have already been proposed  in the
179 literature, so that exhaustivity is impossible.
180 This is why authors of this document only give reference to the most significant attempts 
181 in this domain, from their subjective point of view. 
182 The  quantity of pseudorandom numbers generated per second is mentioned here 
183 only when the information is given in the related work. 
184 A million numbers  per second will be simply written as
185 1MSample/s whereas a billion numbers per second is 1GSample/s.
186
187 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
188 with no  requirement to an high  precision  integer   arithmetic  or to any bitwise
189 operations. Authors can   generate  about
190 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
191 However, there is neither a mention of statistical tests nor any proof of
192 chaos or cryptography in this document.
193
194 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
195 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
196 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
197 GPU. Performances of  the GPU versions are far better than  those obtained with a
198 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
199 However the evaluations of the proposed PRNGs are only statistical ones.
200
201
202 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
203 PRNGs on  different computing architectures: CPU,  field-programmable gate array
204 (FPGA), massively parallel  processors, and GPU. This study is of interest, because
205 the  performance  of the  same  PRNGs on  different architectures are compared. 
206 FPGA appears as  the  fastest  and the most
207 efficient architecture, providing the fastest number of generated pseudorandom numbers
208 per joule. 
209 However, we notice that authors can ``only'' generate between 11 and 16GSamples/s
210 with a GTX 280  GPU, which should be compared with
211 the results presented in this document.
212 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
213 able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
214
215 Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
216 Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
217 other things 
218 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
219 their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
220 But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
221 \newline
222 \newline
223 We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
224
225 \section{Basic Recalls}
226 \label{section:BASIC RECALLS}
227
228 This section is devoted to basic definitions and terminologies in the fields of
229 topological chaos and chaotic iterations. We assume the reader is familiar
230 with basic notions on topology (see for instance~\cite{Devaney}).
231
232
233 \subsection{Devaney's Chaotic Dynamical Systems}
234
235 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
236 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
237 is for the $k^{th}$ composition of a function $f$. Finally, the following
238 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
239
240
241 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
242 \mathcal{X} \rightarrow \mathcal{X}$.
243
244 \begin{definition}
245 The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
246 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
247 \varnothing$.
248 \end{definition}
249
250 \begin{definition}
251 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
252 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
253 \end{definition}
254
255 \begin{definition}
256 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
257 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
258 any neighborhood of $x$ contains at least one periodic point (without
259 necessarily the same period).
260 \end{definition}
261
262
263 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
264 The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
265 topologically transitive.
266 \end{definition}
267
268 The chaos property is strongly linked to the notion of ``sensitivity'', defined
269 on a metric space $(\mathcal{X},d)$ by:
270
271 \begin{definition}
272 \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
273 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
274 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
275 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
276
277 The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
278 \end{definition}
279
280 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
281 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
282 sensitive dependence on initial conditions (this property was formerly an
283 element of the definition of chaos). To sum up, quoting Devaney
284 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
285 sensitive dependence on initial conditions. It cannot be broken down or
286 simplified into two subsystems which do not interact because of topological
287 transitivity. And in the midst of this random behavior, we nevertheless have an
288 element of regularity''. Fundamentally different behaviors are consequently
289 possible and occur in an unpredictable way.
290
291
292
293 \subsection{Chaotic Iterations}
294 \label{sec:chaotic iterations}
295
296
297 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
298 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
299 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
300  cells  leads to the definition of a particular \emph{state  of the
301 system}. A sequence which  elements belong to $\llbracket 1;\mathsf{N}
302 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
303 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
304
305 \begin{definition}
306 \label{Def:chaotic iterations}
307 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
308 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
309 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
310 \emph{chaotic      iterations}     are     defined      by     $x^0\in
311 \mathds{B}^{\mathsf{N}}$ and
312 \begin{equation}
313 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
314 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
315 \begin{array}{ll}
316   x_i^{n-1} &  \text{ if  }S^n\neq i \\
317   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
318 \end{array}\right.
319 \end{equation}
320 \end{definition}
321
322 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
323 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
324 general  formulation,  $S^n$  can   be  a  subset  of  components  and
325 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
326 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
327 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
328 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
329 priori} no link with the mathematical theory of chaos, presented above.
330
331
332 Let us now recall how to define a suitable metric space where chaotic iterations
333 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
334
335 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
336 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
337 $F_{f}:  \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} 
338 \longrightarrow  \mathds{B}^{\mathsf{N}}$
339 \begin{equation*}
340 \begin{array}{lrll}
341 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
342 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
343 \end{array}%
344 \end{equation*}%
345 \noindent where + and . are the Boolean addition and product operations.
346 Consider the phase space:
347 \begin{equation}
348 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
349 \mathds{B}^\mathsf{N},
350 \end{equation}
351 \noindent and the map defined on $\mathcal{X}$:
352 \begin{equation}
353 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
354 \end{equation}
355 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
356 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
357 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
358 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
359 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
360 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
361 \begin{equation}
362 \left\{
363 \begin{array}{l}
364 X^0 \in \mathcal{X} \\
365 X^{k+1}=G_{f}(X^k).%
366 \end{array}%
367 \right.
368 \end{equation}%
369
370 With this formulation, a shift function appears as a component of chaotic
371 iterations. The shift function is a famous example of a chaotic
372 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
373 chaotic. 
374 To study this claim, a new distance between two points $X = (S,E), Y =
375 (\check{S},\check{E})\in
376 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
377 \begin{equation}
378 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
379 \end{equation}
380 \noindent where
381 \begin{equation}
382 \left\{
383 \begin{array}{lll}
384 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
385 }\delta (E_{k},\check{E}_{k})}, \\
386 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
387 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
388 \end{array}%
389 \right.
390 \end{equation}
391
392
393 This new distance has been introduced to satisfy the following requirements.
394 \begin{itemize}
395 \item When the number of different cells between two systems is increasing, then
396 their distance should increase too.
397 \item In addition, if two systems present the same cells and their respective
398 strategies start with the same terms, then the distance between these two points
399 must be small because the evolution of the two systems will be the same for a
400 while. Indeed, both dynamical systems start with the same initial condition,
401 use the same update function, and as strategies are the same for a while, furthermore
402 updated components are the same as well.
403 \end{itemize}
404 The distance presented above follows these recommendations. Indeed, if the floor
405 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
406 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
407 measure of the differences between strategies $S$ and $\check{S}$. More
408 precisely, this floating part is less than $10^{-k}$ if and only if the first
409 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
410 nonzero, then the $k^{th}$ terms of the two strategies are different.
411 The impact of this choice for a distance will be investigated at the end of the document.
412
413 Finally, it has been established in \cite{guyeux10} that,
414
415 \begin{proposition}
416 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
417 the metric space $(\mathcal{X},d)$.
418 \end{proposition}
419
420 The chaotic property of $G_f$ has been firstly established for the vectorial
421 Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
422 introduced the notion of asynchronous iteration graph recalled bellow.
423
424 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
425 {\emph{asynchronous iteration graph}} associated with $f$ is the
426 directed graph $\Gamma(f)$ defined by: the set of vertices is
427 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
428 $i\in \llbracket1;\mathsf{N}\rrbracket$,
429 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
430 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
431 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
432 strategy $s$ such that the parallel iteration of $G_f$ from the
433 initial point $(s,x)$ reaches the point $x'$.
434 We have then proven in \cite{bcgr11:ip} that,
435
436
437 \begin{theorem}
438 \label{Th:Caractérisation   des   IC   chaotiques}  
439 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
440 if and only if $\Gamma(f)$ is strongly connected.
441 \end{theorem}
442
443 Finally, we have established in \cite{bcgr11:ip} that,
444 \begin{theorem}
445   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
446   iteration graph, $\check{M}$ its adjacency
447   matrix and $M$
448   a $n\times n$ matrix defined by 
449   $
450   M_{ij} = \frac{1}{n}\check{M}_{ij}$ %\textrm{ 
451   if $i \neq j$ and  
452   $M_{ii} = 1 - \frac{1}{n} \sum\limits_{j=1, j\neq i}^n \check{M}_{ij}$ otherwise.
453   
454   If $\Gamma(f)$ is strongly connected, then 
455   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
456   a law that tends to the uniform distribution 
457   if and only if $M$ is a double stochastic matrix.
458 \end{theorem} 
459
460
461 These results of chaos and uniform distribution have led us to study the possibility of building a
462 pseudorandom number generator (PRNG) based on the chaotic iterations. 
463 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
464 \times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
465 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
466 during implementations (due to the discrete nature of $f$). Indeed, it is as if
467 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
468 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
469 Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
470
471 \section{Application to Pseudorandomness}
472 \label{sec:pseudorandom}
473
474 \subsection{A First Pseudorandom Number Generator}
475
476 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
477 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
478 leading thus to a new PRNG that 
479 \begin{color}{red}
480 should improves the statistical properties of each
481 generator taken alone. 
482 Furthermore, the generator obtained by this way possesses various chaos properties that none of the generators used as input
483 present.
484
485
486
487 \begin{algorithm}[h!]
488 \begin{small}
489 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
490 ($n$ bits)}
491 \KwOut{a configuration $x$ ($n$ bits)}
492 $x\leftarrow x^0$\;
493 $k\leftarrow b + PRNG_1(b)$\;
494 \For{$i=0,\dots,k$}
495 {
496 $s\leftarrow{PRNG_2(n)}$\;
497 $x\leftarrow{F_f(s,x)}$\;
498 }
499 return $x$\;
500 \end{small}
501 \caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$}
502 \label{CI Algorithm}
503 \end{algorithm}
504
505
506
507
508 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
509 It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques};
510 an integer $b$, ensuring that the number of executed iterations
511 between two outputs is at least $b$
512 and at most $2b+1$; and an initial configuration $x^0$.
513 It returns the new generated configuration $x$.  Internally, it embeds two
514 inputted generators $PRNG_i(k), i=1,2$,
515  which must return integers
516 uniformly distributed
517 into $\llbracket 1 ; k \rrbracket$.
518 For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003},
519 being a category of very fast PRNGs designed by George Marsaglia
520 that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
521 with a bit shifted version of it. Such a PRNG, which has a period of
522 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. 
523 This XORshift, or any other reasonable PRNG, is used
524 in our own generator to compute both the number of iterations between two
525 outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$).
526
527 %This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
528
529
530 \begin{algorithm}[h!]
531 \begin{small}
532 \KwIn{the internal configuration $z$ (a 32-bit word)}
533 \KwOut{$y$ (a 32-bit word)}
534 $z\leftarrow{z\oplus{(z\ll13)}}$\;
535 $z\leftarrow{z\oplus{(z\gg17)}}$\;
536 $z\leftarrow{z\oplus{(z\ll5)}}$\;
537 $y\leftarrow{z}$\;
538 return $y$\;
539 \end{small}
540 \caption{An arbitrary round of \textit{XORshift} algorithm}
541 \label{XORshift}
542 \end{algorithm}
543
544
545 \subsection{A ``New CI PRNG''}
546
547 In order to make the Old CI PRNG usable in practice, we have proposed 
548 an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}.
549 In this ``New CI PRNG'', we prevent from changing twice a given
550 bit between two outputs.
551 This new generator is designed by the following process. 
552
553 First of all, some chaotic iterations have to be done to generate a sequence 
554 $\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ 
555 of Boolean vectors, which are the successive states of the iterated system. 
556 Some of these vectors will be randomly extracted and our pseudo-random bit 
557 flow will be constituted by their components. Such chaotic iterations are 
558 realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean 
559 vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in 
560 \llbracket 1, 32 \rrbracket^\mathds{N}$ is
561 an \emph{irregular decimation} of $PRNG_2$ sequence, as described in 
562 Algorithm~\ref{Chaotic iteration1}.
563
564 Then, at each iteration, only the $S^n$-th component of state $x^n$ is 
565 updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$.
566 Such a procedure is equivalent to achieve chaotic iterations with
567 the Boolean vectorial negation $f_0$ and some well-chosen strategies.
568 Finally, some $x^n$ are selected
569 by a sequence $m^n$ as the pseudo-random bit sequence of our generator.
570 $(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers.
571
572 The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}.
573 The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input
574 PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}.
575 This function is required to make the outputs uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$
576 (the reader is referred to~\cite{bg10:ip} for more information).
577
578 \begin{equation}
579 \label{Formula}
580 m^n = g(y^n)=
581 \left\{
582 \begin{array}{l}
583 0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\
584 1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\
585 2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\
586 \vdots~~~~~ ~~\vdots~~~ ~~~~\\
587 N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\
588 \end{array}
589 \right.
590 \end{equation}
591
592 \begin{algorithm}
593 \textbf{Input:} the internal state $x$ (32 bits)\\
594 \textbf{Output:} a state $r$ of 32 bits
595 \begin{algorithmic}[1]
596 \FOR{$i=0,\dots,N$}
597 {
598 \STATE$d_i\leftarrow{0}$\;
599 }
600 \ENDFOR
601 \STATE$a\leftarrow{PRNG_1()}$\;
602 \STATE$m\leftarrow{g(a)}$\;
603 \STATE$k\leftarrow{m}$\;
604 \WHILE{$i=0,\dots,k$}
605
606 \STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\;
607 \STATE$S\leftarrow{b}$\;
608     \IF{$d_S=0$}
609     {
610 \STATE      $x_S\leftarrow{ \overline{x_S}}$\;
611 \STATE      $d_S\leftarrow{1}$\;
612
613     }
614     \ELSIF{$d_S=1$}
615     {
616 \STATE      $k\leftarrow{ k+1}$\;
617     }\ENDIF
618 \ENDWHILE\\
619 \STATE $r\leftarrow{x}$\;
620 \STATE return $r$\;
621 \medskip
622 \caption{An arbitrary round of the new CI generator}
623 \label{Chaotic iteration1}
624 \end{algorithmic}
625 \end{algorithm}
626 \end{color}
627
628 \subsection{Improving the Speed of the Former Generator}
629
630 Instead of updating only one cell at each iteration,\begin{color}{red} we now propose to choose a
631 subset of components and to update them together, for speed improvements. Such a proposition leads\end{color}
632 to a kind of merger of the two sequences used in Algorithms 
633 \ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation,
634 this algorithm can be rewritten as follows:
635
636 \begin{equation}
637 \left\{
638 \begin{array}{l}
639 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
640 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
641 \end{array}
642 \right.
643 \label{equation Oplus0}
644 \end{equation}
645 where $\oplus$ is for the bitwise exclusive or between two integers. 
646 This rewriting can be understood as follows. The $n-$th term $S^n$ of the
647 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
648 the list of cells to update in the state $x^n$ of the system (represented
649 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
650 component of this state (a binary digit) changes if and only if the $k-$th 
651 digit in the binary decomposition of $S^n$ is 1.
652
653 The single basic component presented in Eq.~\ref{equation Oplus0} is of 
654 ordinary use as a good elementary brick in various PRNGs. It corresponds
655 to the following discrete dynamical system in chaotic iterations:
656
657 \begin{equation}
658 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
659 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
660 \begin{array}{ll}
661   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
662   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
663 \end{array}\right.
664 \label{eq:generalIC}
665 \end{equation}
666 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
667 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
668 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
669 decomposition of $S^n$ is 1. Such chaotic iterations are more general
670 than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
671 we select a subset of components to change.
672
673
674 Obviously, replacing the previous CI PRNG Algorithms by 
675 Equation~\ref{equation Oplus0}, which is possible when the iteration function is
676 the vectorial negation, leads to a speed improvement 
677 (the resulting generator will be referred as ``Xor CI PRNG''
678 in what follows).
679 However, proofs
680 of chaos obtained in~\cite{bg10:ij} have been established
681 only for chaotic iterations of the form presented in Definition 
682 \ref{Def:chaotic iterations}. The question is now to determine whether the
683 use of more general chaotic iterations to generate pseudorandom numbers 
684 faster, does not deflate their topological chaos properties.
685
686 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
687 \label{deuxième def}
688 Let us consider the discrete dynamical systems in chaotic iterations having 
689 the general form: $\forall    n\in     \mathds{N}^{\ast     }$, $  \forall     i\in
690 \llbracket1;\mathsf{N}\rrbracket $,
691
692 \begin{equation}
693   x_i^n=\left\{
694 \begin{array}{ll}
695   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
696   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
697 \end{array}\right.
698 \label{general CIs}
699 \end{equation}
700
701 In other words, at the $n^{th}$ iteration, only the cells whose id is
702 contained into the set $S^{n}$ are iterated.
703
704 Let us now rewrite these general chaotic iterations as usual discrete dynamical
705 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
706 is required in order to study the topological behavior of the system.
707
708 Let us introduce the following function:
709 \begin{equation}
710 \begin{array}{cccc}
711  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
712          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
713 \end{array} 
714 \end{equation}
715 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
716
717 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
718 $F_{f}:  \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} 
719 \longrightarrow \mathds{B}^{\mathsf{N}}$
720 \begin{equation*}
721 \begin{array}{rll}
722  (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
723 \end{array}%
724 \end{equation*}%
725 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
726 is the negation of the Boolean $x$.
727 Consider the phase space:
728 \begin{equation}
729 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
730 \mathds{B}^\mathsf{N},
731 \end{equation}
732 \noindent and the map defined on $\mathcal{X}$:
733 \begin{equation}
734 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
735 \end{equation}
736 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
737 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
738 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
739 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
740 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
741 be described by the following discrete dynamical system:
742 \begin{equation}
743 \left\{
744 \begin{array}{l}
745 X^0 \in \mathcal{X} \\
746 X^{k+1}=G_{f}(X^k).%
747 \end{array}%
748 \right.
749 \end{equation}%
750
751 Once more, a shift function appears as a component of these general chaotic 
752 iterations. 
753
754 To study the Devaney's chaos property, a distance between two points 
755 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
756 Let us introduce:
757 \begin{equation}
758 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
759 \label{nouveau d}
760 \end{equation}
761 \noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
762  }\delta (E_{k},\check{E}_{k})}$  is once more the Hamming distance, and
763 $  \displaystyle{d_{s}(S,\check{S})}  =  \displaystyle{\dfrac{9}{\mathsf{N}}%
764  \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
765 %%RAPH : ici, j'ai supprimé tous les sauts à la ligne
766 %% \begin{equation}
767 %% \left\{
768 %% \begin{array}{lll}
769 %% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
770 %% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
771 %% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
772 %% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
773 %% \end{array}%
774 %% \right.
775 %% \end{equation}
776 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
777 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
778
779
780 \begin{proposition}
781 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
782 \end{proposition}
783
784 \begin{proof}
785  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
786 too, thus $d$, as being the sum of two distances, will also be a distance.
787  \begin{itemize}
788 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
789 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
790 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
791  \item $d_s$ is symmetric 
792 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
793 of the symmetric difference. 
794 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
795 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
796 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
797 inequality is obtained.
798  \end{itemize}
799 \end{proof}
800
801
802 Before being able to study the topological behavior of the general 
803 chaotic iterations, we must first establish that:
804
805 \begin{proposition}
806  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
807 $\left( \mathcal{X},d\right)$.
808 \end{proposition}
809
810
811 \begin{proof}
812 We use the sequential continuity.
813 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
814 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
815 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
816 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
817 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
818 sequences).\newline
819 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
820 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
821 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
822 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
823 cell will change its state:
824 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
825
826 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
827 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
828 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
829 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
830
831 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
832 identical and strategies $S^n$ and $S$ start with the same first term.\newline
833 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
834 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
835 \noindent We now prove that the distance between $\left(
836 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
837 0. Let $\varepsilon >0$. \medskip
838 \begin{itemize}
839 \item If $\varepsilon \geqslant 1$, we see that the distance
840 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
841 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
842 \medskip
843 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
844 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
845 \begin{equation*}
846 \exists n_{2}\in \mathds{N},\forall n\geqslant
847 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
848 \end{equation*}%
849 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
850 \end{itemize}
851 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
852 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
853 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
854 10^{-(k+1)}\leqslant \varepsilon $.
855
856 In conclusion,
857 %%RAPH : ici j'ai rajouté une ligne
858 $
859 \forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
860 ,$ $\forall n\geqslant N_{0},$
861 $ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
862 \leqslant \varepsilon .
863 $
864 $G_{f}$ is consequently continuous.
865 \end{proof}
866
867
868 It is now possible to study the topological behavior of the general chaotic
869 iterations. We will prove that,
870
871 \begin{theorem}
872 \label{t:chaos des general}
873  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
874 the Devaney's property of chaos.
875 \end{theorem}
876
877 Let us firstly prove the following lemma.
878
879 \begin{lemma}[Strong transitivity]
880 \label{strongTrans}
881  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
882 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
883 \end{lemma}
884
885 \begin{proof}
886  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
887 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
888 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
889 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
890 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
891 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
892 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
893 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
894 \begin{itemize}
895  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
896  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
897 \end{itemize}
898 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
899 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
900 claimed in the lemma.
901 \end{proof}
902
903 We can now prove the Theorem~\ref{t:chaos des general}.
904
905 \begin{proof}[Theorem~\ref{t:chaos des general}]
906 Firstly, strong transitivity implies transitivity.
907
908 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
909 prove that $G_f$ is regular, it is sufficient to prove that
910 there exists a strategy $\tilde S$ such that the distance between
911 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
912 $(\tilde S,E)$ is a periodic point.
913
914 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
915 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
916 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
917 and $t_2\in\mathds{N}$ such
918 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
919
920 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
921 of $S$ and the first $t_2$ terms of $S'$: 
922 %%RAPH : j'ai coupé la ligne en 2
923 $$\tilde
924 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
925 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
926 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
927 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
928 have $d((S,E),(\tilde S,E))<\epsilon$.
929 \end{proof}
930
931
932 \begin{color}{red}
933 \section{Statistical Improvements Using Chaotic Iterations}
934
935 \label{The generation of pseudo-random sequence}
936
937
938 Let us now explain why we are reasonable grounds to believe that chaos 
939 can improve statistical properties.
940 We will show in this section that, when mixing defective PRNGs with
941 chaotic iterations, the result presents better statistical properties
942 (this section summarizes the work of~\cite{bfg12a:ip}).
943
944 \subsection{Details of some Existing Generators}
945
946 The list of defective PRNGs we will use 
947 as inputs for the statistical tests to come is introduced here.
948
949 Firstly, the simple linear congruency generator (LCGs) will be used. 
950 It is defined by the following recurrence:
951 \begin{equation}
952 x^n = (ax^{n-1} + c)~mod~m
953 \label{LCG}
954 \end{equation}
955 where $a$, $c$, and $x^0$ must be, among other things, non-negative and less than 
956 $m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer as two (resp. three) 
957 combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
958
959 Secondly, the multiple recursive generators (MRGs) will be used too, which
960 are based on a linear recurrence of order 
961 $k$, modulo $m$~\cite{LEcuyerS07}:
962 \begin{equation}
963 x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m
964 \label{MRG}
965 \end{equation}
966 Combination of two MRGs (referred as 2MRGs) is also used in these experimentations.
967
968 Generators based on linear recurrences with carry will be regarded too.
969 This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
970 \begin{equation}
971 \label{AWC}
972 \begin{array}{l}
973 x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
974 c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
975 the SWB generator, having the recurrence:
976 \begin{equation}
977 \label{SWB}
978 \begin{array}{l}
979 x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
980 c^n=\left\{
981 \begin{array}{l}
982 1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
983 0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
984 and the SWC generator designed by R. Couture, which is based on the following recurrence:
985 \begin{equation}
986 \label{SWC}
987 \begin{array}{l}
988 x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
989 c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
990
991 Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
992 \begin{equation}
993 x^n = x^{n-r} \oplus x^{n-k}
994 \label{GFSR}
995 \end{equation}
996
997
998 Finally, the nonlinear inversive generator~\cite{LEcuyerS07} has been regarded too, which is:
999
1000 \begin{equation}
1001 \label{INV}
1002 \begin{array}{l}
1003 x^n=\left\{
1004 \begin{array}{ll}
1005 (a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
1006 a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
1007
1008
1009
1010
1011
1012 \subsection{Statistical tests}
1013 \label{Security analysis}
1014
1015 Three batteries of tests are reputed and usually used
1016 to evaluate the statistical properties of newly designed pseudorandom
1017 number generators. These batteries are named DieHard~\cite{Marsaglia1996},
1018 the NIST suite~\cite{ANDREW2008}, and the most stringent one called
1019 TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
1020
1021
1022
1023 \label{Results and discussion}
1024 \begin{table*}
1025 \renewcommand{\arraystretch}{1.3}
1026 \caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
1027 \label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
1028 \centering
1029   \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
1030     \hline\hline
1031 Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1032 \backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
1033 NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
1034 DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
1035 \end{tabular}
1036 \end{table*}
1037
1038 Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
1039 results on the two firsts batteries recalled above, indicating that all the PRNGs presented
1040 in the previous section
1041 cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
1042 fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
1043 iterations can solve this issue.
1044 %More precisely, to
1045 %illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
1046 %\begin{enumerate}
1047 %  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
1048 %  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
1049 %  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
1050 %\begin{equation}
1051 %\begin{array}{l}
1052 %\left\{
1053 %\begin{array}{l}
1054 %x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
1055 %\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
1056 %\end{equation}
1057 %$m$ is called the \emph{functional power}.
1058 %\end{enumerate}
1059 %
1060 The obtained results are reproduced in Table
1061 \ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
1062 The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
1063 asterisk ``*'' means that the considered passing rate has been improved.
1064 The improvements are obvious for both the ``Old CI'' and ``New CI'' generators.
1065 Concerning the ``Xor CI PRNG'', the speed improvement makes that statistical 
1066 results are not as good as for the two other versions of these CIPRNGs.
1067
1068
1069 \begin{table*}
1070 \renewcommand{\arraystretch}{1.3}
1071 \caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
1072 \label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
1073 \centering
1074   \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
1075     \hline
1076 Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1077 \backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
1078 Old CIPRNG\\ \hline \hline
1079 NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1080 DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
1081 New CIPRNG\\ \hline \hline
1082 NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1083 DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
1084 Xor CIPRNG\\ \hline\hline
1085 NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
1086 DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
1087 \end{tabular}
1088 \end{table*}
1089
1090
1091 We have then investigate in~\cite{bfg12a:ip} if it is possible to improve
1092 the statistical behavior of the Xor CI version by combining more than one 
1093 $\oplus$ operation. Results are summarized in~\ref{threshold}, showing
1094 that rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
1095 using chaotic iterations on defective generators.
1096
1097 \begin{table*}
1098 \renewcommand{\arraystretch}{1.3}
1099 \caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
1100 \label{threshold}
1101 \centering
1102   \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
1103     \hline
1104 Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
1105 Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
1106 \end{tabular}
1107 \end{table*}
1108
1109 Next subsection gives a concrete implementation of this Xor CI PRNG, which will 
1110 new be simply called CIPRNG, or ``the proposed PRNG'', if this statement does not
1111 raise ambiguity.
1112 \end{color}
1113
1114 \subsection{Efficient PRNG based on Chaotic Iterations}
1115 \label{sec:efficient PRNG}
1116
1117 Based on the proof presented in the previous section, it is now possible to 
1118 improve the speed of the generator formerly presented in~\cite{bgw09:ip,guyeux10}. 
1119 The first idea is to consider
1120 that the provided strategy is a pseudorandom Boolean vector obtained by a
1121 given PRNG.
1122 An iteration of the system is simply the bitwise exclusive or between
1123 the last computed state and the current strategy.
1124 Topological properties of disorder exhibited by chaotic 
1125 iterations can be inherited by the inputted generator, we hope by doing so to 
1126 obtain some statistical improvements while preserving speed.
1127
1128 %%RAPH : j'ai viré tout ca
1129 %% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
1130 %% are
1131 %% done.  
1132 %% Suppose  that $x$ and the  strategy $S^i$ are given as
1133 %% binary vectors.
1134 %% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
1135
1136 %% \begin{table}
1137 %% \begin{scriptsize}
1138 %% $$
1139 %% \begin{array}{|cc|cccccccccccccccc|}
1140 %% \hline
1141 %% x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
1142 %% \hline
1143 %% S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
1144 %% \hline
1145 %% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
1146 %% \hline
1147
1148 %% \hline
1149 %%  \end{array}
1150 %% $$
1151 %% \end{scriptsize}
1152 %% \caption{Example of an arbitrary round of the proposed generator}
1153 %% \label{TableExemple}
1154 %% \end{table}
1155
1156
1157
1158
1159 \lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label=algo:seqCIPRNG}
1160 \begin{small}
1161 \begin{lstlisting}
1162
1163 unsigned int CIPRNG() {
1164   static unsigned int x = 123123123;
1165   unsigned long t1 = xorshift();
1166   unsigned long t2 = xor128();
1167   unsigned long t3 = xorwow();
1168   x = x^(unsigned int)t1;
1169   x = x^(unsigned int)(t2>>32);
1170   x = x^(unsigned int)(t3>>32);
1171   x = x^(unsigned int)t2;
1172   x = x^(unsigned int)(t1>>32);
1173   x = x^(unsigned int)t3;
1174   return x;
1175 }
1176 \end{lstlisting}
1177 \end{small}
1178
1179
1180
1181 In Listing~\ref{algo:seqCIPRNG} a sequential  version of the proposed PRNG based
1182 on  chaotic  iterations  is  presented.   The xor  operator  is  represented  by
1183 \textasciicircum.  This function uses  three classical 64-bits PRNGs, namely the
1184 \texttt{xorshift},         the          \texttt{xor128},         and         the
1185 \texttt{xorwow}~\cite{Marsaglia2003}.  In the following, we call them ``xor-like
1186 PRNGs''.   As each  xor-like PRNG  uses 64-bits  whereas our  proposed generator
1187 works with 32-bits, we use the command \texttt{(unsigned int)}, that selects the
1188 32 least  significant bits  of a given  integer, and the  code \texttt{(unsigned
1189   int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
1190
1191 Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
1192 that  are provided by  3 64-bits  PRNGs.  This  version successfully  passes the
1193 stringent BigCrush battery of tests~\cite{LEcuyerS07}.
1194
1195 \section{Efficient PRNGs based on Chaotic Iterations on GPU}
1196 \label{sec:efficient PRNG gpu}
1197
1198 In order to  take benefits from the computing power  of GPU, a program
1199 needs  to have  independent blocks  of  threads that  can be  computed
1200 simultaneously. In general,  the larger the number of  threads is, the
1201 more local  memory is  used, and the  less branching  instructions are
1202 used  (if,  while,  ...),  the  better the  performances  on  GPU  is.
1203 Obviously, having these requirements in  mind, it is possible to build
1204 a   program    similar   to    the   one   presented    in  Listing 
1205 \ref{algo:seqCIPRNG}, which computes  pseudorandom numbers on GPU.  To
1206 do  so,  we  must   firstly  recall  that  in  the  CUDA~\cite{Nvid10}
1207 environment,    threads    have     a    local    identifier    called
1208 \texttt{ThreadIdx},  which   is  relative  to   the  block  containing
1209 them. Furthermore, in  CUDA, parts of  the code that are executed by the  GPU, are
1210 called {\it kernels}.
1211
1212
1213 \subsection{Naive Version for GPU}
1214
1215  
1216 It is possible to deduce from the CPU version a quite similar version adapted to GPU.
1217 The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.  
1218 Of course,  the  three xor-like
1219 PRNGs  used in these computations must have different  parameters. 
1220 In a given thread, these parameters are
1221 randomly picked from another PRNGs. 
1222 The  initialization stage is performed by  the CPU.
1223 To do it, the  ISAAC  PRNG~\cite{Jenkins96} is used to  set  all  the
1224 parameters embedded into each thread.   
1225
1226 The implementation of  the three
1227 xor-like  PRNGs  is  straightforward  when  their  parameters  have  been
1228 allocated in  the GPU memory.  Each xor-like  works with  an internal
1229 number  $x$  that saves  the  last  generated  pseudorandom number. Additionally,  the
1230 implementation of the  xor128, the xorshift, and the  xorwow respectively require
1231 4, 5, and 6 unsigned long as internal variables.
1232
1233
1234 \begin{algorithm}
1235 \begin{small}
1236 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
1237 PRNGs in global memory\;
1238 NumThreads: number of threads\;}
1239 \KwOut{NewNb: array containing random numbers in global memory}
1240 \If{threadIdx is concerned by the computation} {
1241   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
1242   \For{i=1 to n} {
1243     compute a new PRNG as in Listing\ref{algo:seqCIPRNG}\;
1244     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1245   }
1246   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1247 }
1248 \end{small}
1249 \caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
1250 \label{algo:gpu_kernel}
1251 \end{algorithm}
1252
1253
1254
1255 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of the proposed  PRNG on
1256 GPU.  Due to the available  memory in the  GPU and the number  of threads
1257 used simultaneously,  the number  of random numbers  that a thread  can generate
1258 inside   a    kernel   is   limited  (\emph{i.e.},    the    variable   \texttt{n}   in
1259 algorithm~\ref{algo:gpu_kernel}). For instance, if  $100,000$ threads are used and
1260 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
1261 then   the  memory   required   to  store all of the  internals   variables  of both the  xor-like
1262 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
1263 and  the pseudorandom  numbers generated by  our  PRNG,  is  equal to  $100,000\times  ((4+5+6)\times
1264 2+(1+100))=1,310,000$ 32-bits numbers, that is, approximately $52$Mb.
1265
1266 This generator is able to pass the whole BigCrush battery of tests, for all
1267 the versions that have been tested depending on their number of threads 
1268 (called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
1269
1270 \begin{remark}
1271 The proposed algorithm has  the  advantage of  manipulating  independent
1272 PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
1273 to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
1274 using a master node for the initialization. This master node computes the initial parameters
1275 for all the different nodes involved in the computation.
1276 \end{remark}
1277
1278 \subsection{Improved Version for GPU}
1279
1280 As GPU cards using CUDA have shared memory between threads of the same block, it
1281 is possible  to use this  feature in order  to simplify the  previous algorithm,
1282 i.e., to use less  than 3 xor-like PRNGs. The solution  consists in computing only
1283 one xor-like PRNG by thread, saving  it into the shared memory, and then to use the results
1284 of some  other threads in the  same block of  threads. In order to  define which
1285 thread uses the result of which other  one, we can use a combination array that
1286 contains  the indexes  of  all threads  and  for which  a combination has  been
1287 performed. 
1288
1289 In  Algorithm~\ref{algo:gpu_kernel2},  two  combination  arrays are  used.   The
1290 variable     \texttt{offset}    is     computed    using     the     value    of
1291 \texttt{combination\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
1292 representing the  indexes of  the other  threads whose results  are used  by the
1293 current one.   In this algorithm, we  consider that a 32-bits  xor-like PRNG has
1294 been chosen. In practice, we  use the xor128 proposed in~\cite{Marsaglia2003} in
1295 which  unsigned longs  (64 bits)  have been  replaced by  unsigned  integers (32
1296 bits).
1297
1298 This version  can also pass the whole {\it BigCrush} battery of tests.
1299
1300 \begin{algorithm}
1301 \begin{small}
1302 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
1303 in global memory\;
1304 NumThreads: Number of threads\;
1305 array\_comb1, array\_comb2: Arrays containing combinations of size combination\_size\;}
1306
1307 \KwOut{NewNb: array containing random numbers in global memory}
1308 \If{threadId is concerned} {
1309   retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
1310   offset = threadIdx\%combination\_size\;
1311   o1 = threadIdx-offset+array\_comb1[offset]\;
1312   o2 = threadIdx-offset+array\_comb2[offset]\;
1313   \For{i=1 to n} {
1314     t=xor-like()\;
1315     t=t\textasciicircum shmem[o1]\textasciicircum shmem[o2]\;
1316     shared\_mem[threadId]=t\;
1317     x = x\textasciicircum t\;
1318
1319     store the new PRNG in NewNb[NumThreads*threadId+i]\;
1320   }
1321   store internal variables in InternalVarXorLikeArray[threadId]\;
1322 }
1323 \end{small}
1324 \caption{Main kernel for the chaotic iterations based PRNG GPU efficient
1325 version\label{IR}}
1326 \label{algo:gpu_kernel2} 
1327 \end{algorithm}
1328
1329 \subsection{Theoretical Evaluation of the Improved Version}
1330
1331 A run of Algorithm~\ref{algo:gpu_kernel2} consists in an operation ($x=x\oplus t$) having 
1332 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
1333 system of Eq.~\ref{eq:generalIC}. That is, an iteration of the general chaotic
1334 iterations is realized between the last stored value $x$ of the thread and a strategy $t$
1335 (obtained by a bitwise exclusive or between a value provided by a xor-like() call
1336 and two values previously obtained by two other threads).
1337 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1338 we must guarantee that this dynamical system iterates on the space 
1339 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1340 The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
1341 To prevent from any flaws of chaotic properties, we must check that the right 
1342 term (the last $t$), corresponding to the strategies,  can possibly be equal to any
1343 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1344
1345 Such a result is obvious, as for the xor-like(), all the
1346 integers belonging into its interval of definition can occur at each iteration, and thus the 
1347 last $t$ respects the requirement. Furthermore, it is possible to
1348 prove by an immediate mathematical induction that, as the initial $x$
1349 is uniformly distributed (it is provided by a cryptographically secure PRNG),
1350 the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
1351 (this is the induction hypothesis), and thus the next $x$ is finally uniformly distributed.
1352
1353 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1354 chaotic iterations presented previously, and for this reason, it satisfies the 
1355 Devaney's formulation of a chaotic behavior.
1356
1357 \section{Experiments}
1358 \label{sec:experiments}
1359
1360 Different experiments  have been  performed in order  to measure  the generation
1361 speed. We have used a first computer equipped with a Tesla C1060 NVidia  GPU card
1362 and an
1363 Intel  Xeon E5530 cadenced  at 2.40  GHz,  and 
1364 a second computer  equipped with a smaller  CPU and  a GeForce GTX  280. 
1365 All the
1366 cards have 240 cores.
1367
1368 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
1369 generated per second with various xor-like based PRNGs. In this figure, the optimized
1370 versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
1371 embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
1372 order to obtain the optimal performances, the storage of pseudorandom numbers
1373 into the GPU memory has been removed. This step is time consuming and slows down the numbers
1374 generation.  Moreover this   storage  is  completely
1375 useless, in case of applications that consume the pseudorandom
1376 numbers  directly   after generation. We can see  that when the number of  threads is greater
1377 than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
1378 per second  is almost constant.  With the  naive version, this value ranges from 2.5 to
1379 3GSamples/s.   With  the  optimized   version,  it  is  approximately  equal to
1380 20GSamples/s. Finally  we can remark  that both GPU  cards are quite  similar, but in
1381 practice,  the Tesla C1060  has more  memory than  the GTX  280, and  this memory
1382 should be of better quality.
1383 As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of  about
1384 138MSample/s when using one core of the Xeon E5530.
1385
1386 \begin{figure}[htbp]
1387 \begin{center}
1388   \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf}
1389 \end{center}
1390 \caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
1391 \label{fig:time_xorlike_gpu}
1392 \end{figure}
1393
1394
1395
1396
1397
1398 In Figure~\ref{fig:time_bbs_gpu} we highlight  the performances of the optimized
1399 BBS-based PRNG on GPU.  On  the Tesla C1060 we obtain approximately 700MSample/s
1400 and  on the  GTX 280  about  670MSample/s, which  is obviously  slower than  the
1401 xorlike-based PRNG on GPU. However, we  will show in the next sections that this
1402 new PRNG  has a strong  level of  security, which is  necessarily paid by  a speed
1403 reduction.
1404
1405 \begin{figure}[htbp]
1406 \begin{center}
1407   \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf}
1408 \end{center}
1409 \caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
1410 \label{fig:time_bbs_gpu}
1411 \end{figure}
1412
1413 All  these  experiments allow  us  to conclude  that  it  is possible  to
1414 generate a very large quantity of pseudorandom  numbers statistically perfect with the  xor-like version.
1415 To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being
1416 explained by the fact that the former  version has ``only''
1417 chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
1418 as it is shown in the next sections.
1419
1420
1421
1422
1423
1424
1425
1426 \section{Security Analysis}
1427 \label{sec:security analysis}
1428
1429
1430
1431 In this section the concatenation of two strings $u$ and $v$ is classically
1432 denoted by $uv$.
1433 In a cryptographic context, a pseudorandom generator is a deterministic
1434 algorithm $G$ transforming strings  into strings and such that, for any
1435 seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
1436 $\ell_G(m)$ with $\ell_G(m)>m$.
1437 The notion of {\it secure} PRNGs can now be defined as follows. 
1438
1439 \begin{definition}
1440 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1441 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1442 large $m$'s,
1443 $$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
1444 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1445 probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
1446 internal coin tosses of $D$. 
1447 \end{definition}
1448
1449 Intuitively, it means that there is no polynomial time algorithm that can
1450 distinguish a perfect uniform random generator from $G$ with a non
1451 negligible probability. The interested reader is referred
1452 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
1453 quite easily possible to change the function $\ell$ into any polynomial
1454 function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
1455
1456 The generation schema developed in (\ref{equation Oplus}) is based on a
1457 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1458 without loss of generality, that for any string $S_0$ of size $N$, the size
1459 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1460 Let $S_1,\ldots,S_k$ be the 
1461 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1462 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1463 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1464 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1465 (x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1466 We claim now that if this PRNG is secure,
1467 then the new one is secure too.
1468
1469 \begin{proposition}
1470 \label{cryptopreuve}
1471 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1472 PRNG too.
1473 \end{proposition}
1474
1475 \begin{proof}
1476 The proposition is proved by contraposition. Assume that $X$ is not
1477 secure. By Definition, there exists a polynomial time probabilistic
1478 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1479 $N\geq \frac{k_0}{2}$ satisfying 
1480 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1481 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1482 $kN$:
1483 \begin{enumerate}
1484 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1485 \item Pick a string $y$ of size $N$ uniformly at random.
1486 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1487   \bigoplus_{i=1}^{i=k} w_i).$
1488 \item Return $D(z)$.
1489 \end{enumerate}
1490
1491
1492 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1493 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1494 (each $w_i$ has length $N$) to 
1495 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1496   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1497 \begin{equation}\label{PCH-1}
1498 D^\prime(w)=D(\varphi_y(w)),
1499 \end{equation}
1500 where $y$ is randomly generated. 
1501 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1502 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1503 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1504 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1505 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1506 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1507 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1508 one has
1509 $\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
1510 therefore, 
1511 \begin{equation}\label{PCH-2}
1512 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
1513 \end{equation}
1514
1515 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1516 \begin{equation}\label{PCH-3}
1517 D^\prime(H(x))=D(\varphi_y(H(x))),
1518 \end{equation}
1519 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1520 thus
1521 \begin{equation}%\label{PCH-3}      %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
1522 D^\prime(H(x))=D(yx),
1523 \end{equation}
1524 where $y$ is randomly generated. 
1525 It follows that 
1526
1527 \begin{equation}\label{PCH-4}
1528 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1529 \end{equation}
1530  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1531 there exists a polynomial time probabilistic
1532 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1533 $N\geq \frac{k_0}{2}$ satisfying 
1534 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1535 proving that $H$ is not secure, which is a contradiction. 
1536 \end{proof}
1537
1538
1539 \section{Cryptographical Applications}
1540
1541 \subsection{A Cryptographically Secure PRNG for GPU}
1542 \label{sec:CSGPU}
1543
1544 It is  possible to build a  cryptographically secure PRNG based  on the previous
1545 algorithm (Algorithm~\ref{algo:gpu_kernel2}).   Due to Proposition~\ref{cryptopreuve},
1546 it simply consists  in replacing
1547 the  {\it  xor-like} PRNG  by  a  cryptographically  secure one.  
1548 We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
1549 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers (these
1550 prime numbers  need to be congruent  to 3 modulus  4). BBS is known to be
1551 very slow and only usable for cryptographic applications. 
1552
1553   
1554 The modulus operation is the most time consuming operation for current
1555 GPU cards.  So in order to obtain quite reasonable performances, it is
1556 required to use only modulus  on 32-bits integer numbers. Consequently
1557 $x_n^2$ need  to be lesser than $2^{32}$,  and thus the number $M$ must be
1558 lesser than $2^{16}$.  So in practice we can choose prime numbers around
1559 256 that are congruent to 3 modulus 4.  With 32-bits numbers, only the
1560 4 least significant bits of $x_n$ can be chosen (the maximum number of
1561 indistinguishable    bits    is    lesser    than   or    equals    to
1562 $log_2(log_2(M))$). In other words, to generate a  32-bits number, we need to use
1563 8 times  the BBS  algorithm with possibly different  combinations of  $M$. This
1564 approach is  not sufficient to be able to pass  all the tests of TestU01,
1565 as small values of  $M$ for the BBS  lead to
1566   small periods. So, in  order to add randomness  we have proceeded with
1567 the followings  modifications. 
1568 \begin{itemize}
1569 \item
1570 Firstly, we  define 16 arrangement arrays  instead of 2  (as described in
1571 Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
1572 the  PRNG kernels. In  practice, the  selection of   combination
1573 arrays to be used is different for all the threads. It is determined
1574 by using  the three last bits  of two internal variables  used by BBS.
1575 %This approach  adds more randomness.   
1576 In Algorithm~\ref{algo:bbs_gpu},
1577 character  \& is for the  bitwise AND. Thus using  \&7 with  a number
1578 gives the last 3 bits, thus providing a number between 0 and 7.
1579 \item
1580 Secondly, after the  generation of the 8 BBS numbers  for each thread, we
1581 have a 32-bits number whose period is possibly quite small. So
1582 to add randomness,  we generate 4 more BBS numbers   to
1583 shift  the 32-bits  numbers, and  add up to  6 new  bits.  This  improvement is
1584 described  in Algorithm~\ref{algo:bbs_gpu}.  In  practice, the last 2 bits
1585 of the first new BBS number are  used to make a left shift of at most
1586 3 bits. The  last 3 bits of the  second new BBS number are  added to the
1587 strategy whatever the value of the first left shift. The third and the
1588 fourth new BBS  numbers are used similarly to apply  a new left shift
1589 and add 3 new bits.
1590 \item
1591 Finally, as  we use 8 BBS numbers  for each thread, the  storage of these
1592 numbers at the end of the  kernel is performed using a rotation. So,
1593 internal  variable for  BBS number  1 is  stored in  place  2, internal
1594 variable  for BBS  number 2  is  stored in  place 3,  ..., and finally, internal
1595 variable for BBS number 8 is stored in place 1.
1596 \end{itemize}
1597
1598 \begin{algorithm}
1599 \begin{small}
1600 \KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
1601 in global memory\;
1602 NumThreads: Number of threads\;
1603 array\_comb: 2D Arrays containing 16 combinations (in first dimension)  of size combination\_size (in second dimension)\;
1604 array\_shift[4]=\{0,1,3,7\}\;
1605 }
1606
1607 \KwOut{NewNb: array containing random numbers in global memory}
1608 \If{threadId is concerned} {
1609   retrieve data from InternalVarBBSArray[threadId] in local variables including shared memory and x\;
1610   we consider that bbs1 ... bbs8 represent the internal states of the 8 BBS numbers\;
1611   offset = threadIdx\%combination\_size\;
1612   o1 = threadIdx-offset+array\_comb[bbs1\&7][offset]\;
1613   o2 = threadIdx-offset+array\_comb[8+bbs2\&7][offset]\;
1614   \For{i=1 to n} {
1615     t$<<$=4\;
1616     t|=BBS1(bbs1)\&15\;
1617     ...\;
1618     t$<<$=4\;
1619     t|=BBS8(bbs8)\&15\;
1620     \tcp{two new shifts}
1621     shift=BBS3(bbs3)\&3\;
1622     t$<<$=shift\;
1623     t|=BBS1(bbs1)\&array\_shift[shift]\;
1624     shift=BBS7(bbs7)\&3\;
1625     t$<<$=shift\;
1626     t|=BBS2(bbs2)\&array\_shift[shift]\;
1627     t=t\textasciicircum  shmem[o1]\textasciicircum     shmem[o2]\;
1628     shared\_mem[threadId]=t\;
1629     x = x\textasciicircum   t\;
1630
1631     store the new PRNG in NewNb[NumThreads*threadId+i]\;
1632   }
1633   store internal variables in InternalVarXorLikeArray[threadId] using a rotation\;
1634 }
1635 \end{small}
1636 \caption{main kernel for the BBS based PRNG GPU}
1637 \label{algo:bbs_gpu}
1638 \end{algorithm}
1639
1640 In Algorithm~\ref{algo:bbs_gpu}, $n$ is for  the quantity of random numbers that
1641 a thread has to  generate.  The operation t<<=4 performs a left  shift of 4 bits
1642 on the variable  $t$ and stores the result in  $t$, and $BBS1(bbs1)\&15$ selects
1643 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
1644 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
1645 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
1646 remark that the initialization $t$ is not a  necessity as we fill it 4 bits by 4
1647 bits, until  having obtained 32-bits.  The  two last new shifts  are realized in
1648 order to enlarge the small periods of  the BBS used here, to introduce a kind of
1649 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
1650   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
1651 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
1652 last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
1653 correspondence between the  shift and the number obtained  with \texttt{shift} 1
1654 to make the \texttt{and} operation is used. For example, with a left shift of 0,
1655 we  make an  and operation  with 0,  with  a left  shift of  3, we  make an  and
1656 operation with 7 (represented by 111 in binary mode).
1657
1658 It should  be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
1659 where $S^n$ is referred in this algorithm as $t$: each iteration of this
1660 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
1661 by secure bits produced by the BBS generator, and thus, due to
1662 Proposition~\ref{cryptopreuve}, the resulted PRNG is cryptographically
1663 secure.
1664
1665
1666
1667 \begin{color}{red}
1668 \subsection{Practical Security Evaluation}
1669
1670 Suppose now that the PRNG will work during 
1671 $M=100$ time units, and that during this period,
1672 an attacker can realize $10^{12}$ clock cycles.
1673 We thus wonder whether, during the PRNG's 
1674 lifetime, the attacker can distinguish this 
1675 sequence from truly random one, with a probability
1676 greater than $\varepsilon = 0.2$.
1677 We consider that $N$ has 900 bits.
1678
1679 The random process is the BBS generator, which
1680 is cryptographically secure. More precisely, it
1681 is $(T,\varepsilon)-$secure: no 
1682 $(T,\varepsilon)-$distinguishing attack can be
1683 successfully realized on this PRNG, if~\cite{Fischlin}
1684 $$
1685 T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
1686 $$
1687 where $M$ is the length of the output ($M=100$ in
1688 our example), and $L(N)$ is equal to
1689 $$
1690 2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln(2)^\frac{1}{3}) \times ln(N~ln 2)^\frac{2}{3}\right)
1691 $$
1692 is the number of clock cycles to factor a $N-$bit
1693 integer.
1694
1695 A direct numerical application shows that this attacker 
1696 cannot achieve its $(10^{12},0.2)$ distinguishing
1697 attack in that context.
1698
1699 \end{color}
1700
1701 \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
1702 \label{Blum-Goldwasser}
1703 We finish this research work by giving some thoughts about the use of
1704 the proposed PRNG in an asymmetric cryptosystem.
1705 This first approach will be further investigated in a future work.
1706
1707 \subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem}
1708
1709 The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm 
1710 proposed in 1984~\cite{Blum:1985:EPP:19478.19501}.  The encryption algorithm 
1711 implements a XOR-based stream cipher using the BBS PRNG, in order to generate 
1712 the keystream. Decryption is done by obtaining the initial seed thanks to
1713 the final state of the BBS generator and the secret key, thus leading to the
1714  reconstruction of the keystream.
1715
1716 The key generation consists in generating two prime numbers $(p,q)$, 
1717 randomly and independently of each other, that are
1718  congruent to 3 mod 4, and to compute the modulus $N=pq$.
1719 The public key is $N$, whereas the secret key is the factorization $(p,q)$.
1720
1721
1722 Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice:
1723 \begin{enumerate}
1724 \item Bob picks an integer $r$ randomly in the interval $\llbracket 1,N\rrbracket$ and computes $x_0 = r^2~mod~N$.
1725 \item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$,
1726 \begin{itemize}
1727 \item $i=0$.
1728 \item While $i \leqslant L-1$:
1729 \begin{itemize}
1730 \item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
1731 \item $i=i+1$,
1732 \item $x_i = (x_{i-1})^2~mod~N.$
1733 \end{itemize}
1734 \end{itemize}
1735 \item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus  b$. This ciphertext is $[c, y]$, where $y=x_{0}^{2^{L}}~mod~N.$
1736 \end{enumerate}
1737
1738
1739 When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ as follows:
1740 \begin{enumerate}
1741 \item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
1742 \item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
1743 \item She recomputes the bit-vector $b$ by using BBS and $x_0$.
1744 \item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus  b$.
1745 \end{enumerate}
1746
1747
1748 \subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}
1749
1750 We propose to adapt the Blum-Goldwasser protocol as follows. 
1751 Let $\mathsf{N} = \lfloor log(log(N)) \rfloor$ be the number of bits that can
1752 be obtained securely with the BBS generator using the public key $N$ of Alice.
1753 Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too, and
1754 her new public key will be $(S^0, N)$.
1755
1756 To encrypt his message, Bob will compute
1757 %%RAPH : ici, j'ai mis un simple $
1758 %\begin{equation}
1759 $c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
1760 $ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
1761 %%\end{equation}
1762 instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$. 
1763
1764 The same decryption stage as in Blum-Goldwasser leads to the sequence 
1765 $\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$.
1766 Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
1767 By doing so, the proposed generator is used in place of BBS, leading to
1768 the inheritance of all the properties presented in this paper.
1769
1770 \section{Conclusion}
1771
1772
1773 In  this  paper, a formerly proposed PRNG based on chaotic iterations
1774 has been generalized to improve its speed. It has been proven to be
1775 chaotic according to Devaney.
1776 Efficient implementations on  GPU using xor-like  PRNGs as input generators
1777 have shown that a very large quantity of pseudorandom numbers can be generated per second (about
1778 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
1779 namely the BigCrush.
1780 Furthermore, we have shown that when the inputted generator is cryptographically
1781 secure, then it is the case too for the PRNG we propose, thus leading to
1782 the possibility to develop fast and secure PRNGs using the GPU architecture.
1783 \begin{color}{red} An improvement of the Blum-Goldwasser cryptosystem, making it 
1784 behaves chaotically, has finally been proposed. \end{color}
1785
1786 In future  work we plan to extend this research, building a parallel PRNG for  clusters or
1787 grid computing. Topological properties of the various proposed generators will be investigated,
1788 and the use of other categories of PRNGs as input will be studied too. The improvement
1789 of Blum-Goldwasser will be deepened. Finally, we
1790 will try to enlarge the quantity of pseudorandom numbers generated per second either
1791 in a simulation context or in a cryptographic one.
1792
1793
1794
1795 \bibliographystyle{plain} 
1796 \bibliography{mabase}
1797 \end{document}