In this section, experiments for both Multisplitting algorithms are reported. First the problem sued in our experiments is described.
-\RC{Lilia a toi de jouer}
+We use our two-stage algorithms to solve the well-known 3D Poisson problem $\nabla^2\phi=f$, where $\nabla^2$ is the Laplace operator. In three-dimensional Cartesian coordinates in $\mathbb{R}^3$, the problem takes the following form
+\begin{equation}
+\frac{\partial^2}{\partial x^2}\phi(x,y,z)+\frac{\partial^2}{\partial y^2}\phi(x,y,z)+\frac{\partial^2}{\partial z^2}\phi(x,y,z)=f(x,y,z)\mbox{~in~}\Omega
+\label{eq:07}
+\end{equation}
+where the real-valued function $\phi(x,y,z)=0\mbox{~on~}\partial\Omega$ is the solution sought, $f(x,y,z)$ is a known function and the domain $\Omega=[0,1]^3$.
\subsection{Study setup and Simulation Methodology}