1 \vspace{-1.5em}\begin{itemize}
2 \item Discrete Iterative System:
4 \item $x=(x_1,\dots,x_n)$ : $n$ components, $x_i$ in $\Bool=\{0,1\}$.
5 \item A \emph{strategy} \alert<2>{$(S^{t})^{t \in \Nats}$}: sequence of the
6 components that may be updated at time $t$.
7 \item Components evolution: defined for times $t=0,1,2,\ldots$
12 \alert<2>{x^{0}}\in \Bool^{n} \textrm{ and}\\
13 x^{t+1}= (x^{t+1}_1,\dots,x^{t+1}_n) \textrm{ where }
17 \overline{x^{t}_i} \textrm{ if $i = S^t$} \\
18 x^t_i \textrm{ otherwise}
25 \item Theoretical Results~\cite{GuyeuxThese10}\footnote{\bibentry{GuyeuxThese10}}: let $\mathcal{X}$ be
26 $ \llbracket 1 ; n \rrbracket^{\Nats} \times
27 \Bool^n$. We can define a distance $d$ on $\mathcal{X}$ and
28 a function $f: \mathcal{X} \rightarrow \mathcal{X}$ from the
30 s.t. $f$ is a continuous and chaotic function.