]> AND Private Git Repository - these_gilles.git/blobdiff - THESE/Chapters/chapter2/chapter2.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
28/08 matin
[these_gilles.git] / THESE / Chapters / chapter2 / chapter2.tex
index 53201d62e4a9e94e2b60dc84b98ec5468bb22b31..2e2e701750a0621bc76ff5436e6e063b403a7f9c 100644 (file)
@@ -89,13 +89,13 @@ La figure \ref{fig-histo-cochon} illustre le traitement typique de l'histogramme
 
 \begin{figure}
   \centering
-  \subfigure[Image initiale comportant deux zones : le fond et le cochon (la cible)]{\label{fig-histo-cochon-a} \includegraphics[height=3cm]{/home/zulu/Documents/THESE/codes/cochon256.png}}\quad
-  \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-b} \includegraphics[height=3cm]{/home/zulu/Documents/THESE/codes/seg_histogramme/histo-cochon256.png}}\quad
-  \subfigure[Image binaire représentant la segmentation. Seuil estimé à 101 après 4 itérations.]{\label{fig-histo-cochon-c} \includegraphics[width=3cm]{/home/zulu/Documents/THESE/codes/seg_histogramme/cochon256-seghisto-101-255.png}}\\
-\subfigure[Image initiale bruitée]{\label{fig-histo-cochon-d} \includegraphics[height=3cm]{/home/zulu/Documents/THESE/codes/cochon256-sig25.png}}\quad
-  \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-e} \includegraphics[height=3cm]{/home/zulu/Documents/THESE/codes/seg_histogramme/histo-cochon256-sig25.png}}\quad
-  \subfigure[Image binaire représentant la segmentation. Seuil estimé à 99 après 5 itérations.]{\label{fig-histo-cochon-f} \includegraphics[height=3cm]{/home/zulu/Documents/THESE/codes/seg_histogramme/cochon256-sig25-seghisto-99-255.png}}
-  \caption{Segmentation par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation.}
+  \subfigure[Image initiale comportant deux zones : le fond et le cochon (la cible)]{\label{fig-histo-cochon-a} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256.png}}\quad
+  \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-b} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256.png}}\quad
+  \subfigure[Image binaire représentant la segmentation. Seuil estimé à 101 après 4 itérations.]{\label{fig-histo-cochon-c} \includegraphics[width=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-seghisto-101-255.png}}\\
+\subfigure[Image initiale bruitée]{\label{fig-histo-cochon-d} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/cochon256-sig25.png}}\quad
+  \subfigure[Histogramme des niveaux de gris]{\label{fig-histo-cochon-e} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/histo-cochon256-sig25.png}}\quad
+  \subfigure[Image binaire représentant la segmentation. Seuil estimé à 99 après 5 itérations.]{\label{fig-histo-cochon-f} \includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/seg_histogramme/cochon256-sig25-seghisto-99-255.png}}
+  \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entrée. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : résultat de la segmentation.}
 \label{fig-histo-cochon}
 \end{figure}
  
@@ -122,11 +122,21 @@ L'essentiel de la problématique réside donc dans la métrique retenue pour év
 Nous pouvons retenir que les premières d'entre elles, qui n'étaient pas spécifiquement dédiées à la segmentation d'images numériques mais au regroupement d'éléments répartis sur un domaine (1D ou 2D), ont été élaborées autour d'une mesure locale des liens basée sur la distance entre les éléments. La réduction du graphe est ensuite effectuée en utilisant un algorithme spécifique, comme le \textit{minimum spanning tree}, dont l'application a été décrite dès 1970 dans \ref{slac-pub-0672} et où il s'agit simplement de supprimer les liens \textit{inconsistants}, c'est à dire ceux dont le poids est significativement plus élevé que la moyenne des voisins se trouvant de chaque coté du lien en question.
 L'extension a rapidement été faite aux images numériques en ajoutant l'intensité des pixels au vecteur des paramètres pris en compte dans l'évaluation du poids des liens.
 D'autres critères de simplification ont aussi été élaborés, avec pour ambition de toujours mieux prendre en compte les caractéristiques structurelles globales des images pour prétendre à une segmentation qui conduise à une meilleure perception conceptuelle.
-Le principe général des solutions actuelles est proche de l'analyse en composantes principales appliquée à une matrice d'affinités qui traduit les liens entre les segments.
+Le principe général des solutions actuelles est proche de l'analyse en composantes principales appliquée à une matrice de similarité qui traduit les liens entre les segments.
 On peut citer, par ordre chronologique, les méthodes reposant sur le \textit{graphe optimal} de Wu et Leahy \ref{wulealy_1993} et plus récemment \ref{cf_notes x5}. Le principal point faible de ces techniques réside essentiellement dans la difficulté  à trouver un compromis acceptable entre identification de structures globales et préservation des éléments de détails. Cela se traduit dans la pratique par un ensemble de paramètres à régler pour chaque type de segmentation à effectuer.
 Cependant, elles sont employées dans les algorithmes de haut niveau les plus récents, comme nous le verrons plus loin.
-La figure \ref{fig-graph-cochon} montre un exemple de l'application de l'algorithme \textit{normalized cuts} décrit dans \ref{sm-ncuts}. Quatre paramètres sont à fixer pour réaliser la segmentation, ils correspondent respectivement aux facteurs de forme de la matrice d'affinités en termes de distance et de niveau de gris (2 paramètres), à la surface minimale admise pour un segment ainsi qu'au seuil de ségmentation des graphes. Le choix des valeurs pour les paramètres n'est pas immédiat et la figure illustre bien la difficulté de trouver un compromis acceptable. Enfin, les temps d'exécutions peuvent devenir très rapidement prohibitifs dès lors que l'on utilise des facteurs de forme étendus.
-  
+La figure \ref{fig-graph-cochon} montre un exemple de l'application de l'algorithme \textit{normalized cuts} décrit dans \ref{sm-ncuts pami2000} et implémenté par Cour, Yu et Shi en 2004. Cette implémentation utilise des valeurs pré-établies des paramètres de calcul de la matrice de similarité produisant de bonnes segmentations d'objets et/ou personnes dans les images naturelles, mais requiert de prédéterminer le nombre de segments à obtenir. Les images de la figure représentent les résultats obtenus avec un nombre de segments variant de 2 à 5 et montrent qu'il difficile de trouver un compromis acceptable. Enfin, les temps d'exécutions peuvent devenir très rapidement prohibitifs, même avec des implémentations plus optimisées. Pour information, les résultats de la figure \ref{fig-graph-cochon} ont été obtenus en 1.5~s environ (Matlab R2010 sur CPU intel core i5-2520M @ 2.50GHz - linux 3.2.0) 
+\begin{figure}
+  \centering
+  \subfigure[$s = 2$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_2seg.png}}\quad
+  \subfigure[$s = 3$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_3seg.png}}\\
+  \subfigure[$s = 4$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_4seg.png}}\quad
+  \subfigure[$s = 5$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/graphe/cochon128_ncuts_5seg.png}}
+  \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par simplification de graphe de type \textit{Normalized cut} pour un nombre $s$ de segments variant de 2 à 5.}
+\label{fig-graph-cochon}
+\end{figure}
+%TODO 
+%donner l'expression générale de la matrice de similarité ?
     
 \subsection{kernel-means, mean-shift et dérivés}
 Parallèlement à la réduction de graphes, d'autres approches ont donné naissance à une multitude de variantes tournées vers la recherche des moindres carrés. 
@@ -143,13 +153,33 @@ Un autre est d'être très dépendant du choix des $k$ éléments initiaux, en n
 Toutefois, vraisemblablement du fait de sa simplicité d'implémentation et de temps d'exécution rapides, la communauté scientifique s'est beaucoup penchée sur cette méthode pour en compenser les défauts, jusqu'à en faire une des plus employées, en particulier par les statisticiens.
 On compte aussi beaucoup de variantes telles les \textit{k-centers} \ref{k_centers} et les \textit{k-médians} \ref{k_medians} qui n'employent pas la moyenne arithmétique comme expression du ``centre'' d'un segment. 
 Des solutions ont aussi été apportées pour l'estimation de $k$ en employant, par exemple, un critère de vraisemblance pour choisir la meilleure valeur de $k$ dans un intervalle donné \ref{x-means}.
+À titre d'illustration et de comparaison, l'image du cochon a été traitée par une implémentation naïve de l'algorithme original des \textit{k-means} en donnant successivement au nombre de segments les valeurs $s=2$ à $s=5$. Les résultats sont reproduits à la figure \ref{fig-kmeans-cochon} et montrent encore une fois l'influence de $s$ sur la segmentation.
+\begin{figure}
+  \centering
+  \subfigure[$s = 2$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_2seg.png}}\quad
+  \subfigure[$s = 3$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_3seg.png}}\\
+  \subfigure[$s = 4$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_4seg.png}}\quad
+  \subfigure[$s = 5$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/kmeans/cochon128_kmeans_5seg.png}}
+  \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme \textit{k-means} pour un nombre $s$ de segments variant de 2 à 5. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments.}
+\label{fig-kmeans-cochon}
+\end{figure}
 
 Un algorithme initiallement proposé en 1975 par Fukunaga et Hostetler \ref{Lestimation_html} permet de manière plus générique de déterminer le nombre de segments, ou modes, ainsi que les points, ou pixels, qui les composent. Il cherche pour ce faire à localiser les $k$ positions ou le gradient de densité s'annule. 
 Il utilisé un voisinage pondére (ou \textit{kernel}) et détermine le centre de masse des segments en suivant itérativement le gradient de densité dans le voisinage autour de chaque élément du domaine. Lorsque l'algorithme à convergé, les $k$ segments sont identifiés et continennent chacun l'ensemble des points qui ont conduit à leur centre de masse respectif.
 Étonnement, malgré ses qualités intrinsèques, cet algorithme du \textit{mean-shift} est resté longtemps sans susciter de grand intérêt, jusqu'à l'étude de Cheng \ref{meanshift_1995} qui en a demontré les propriétés et établi les lien avec d'autres techniques d'optimisation commme la descente/montée de gradient ou de filtrage commme le floutage.
 Comaniciu et Peer ont alors étendu l'étude et proposé une application à la segmentation en utilisant l'espace colorimétrique CIELUV \ref{Computer Graphics by Foley, van Dam, Feiner, and Hughes, published by Addison-Wesley, 1990} et montré qu'elle permettait une meilleure identification des modes de l'image \ref{mean_shift 1999 2002}.
+Une implémentation de la variante proposée par Keselman et Micheli-Tzanakou dans \ref{yket1999} appliquée à notre image de test fournit les résultats reproduits à la figure  \ref{fig-meanshift-cochon}. Pour se rapprocher des traitements précédents, nous avons identifié, par essais successifs, les tailles de voisinage conduisant à des nombre de segments identiques à ceux des figures précedentes (de 2 à 5). Le volume minimal admis pour un segment à été arbitrairement fixé à 100 pixels. 
+\begin{figure}
+  \centering
+  \subfigure[$r=100 \Rightarrow s = 2$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r100m100.png}}\quad
+  \subfigure[$r=50 \Rightarrow s = 3$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r50m100.png}}\\
+\subfigure[$r=35 \Rightarrow s = 4$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r35m100.png}}\quad
+  \subfigure[$r=25 \Rightarrow s = 5$]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/meanshift/cochon128_meanshift_r25m100.png}}  
+  \caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme \textit{mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 à 5. Le volume minimal admis pour un segment est fixé à 100 pixels. Chaque couleur est associée à un segment. Les couleurs sont choisies pour une meilleure visualisation des différents segments.}
+\label{fig-meanshift-cochon}
+\end{figure}
 
-Il est à noter que les segmentations basées sur des algorithmes de \textit{clustering} nécessitent une phase supplémentaire de génération des frontières inter-segments et d'affectation de la valeur de chaque segment aux éléments qui le composent. 
+Il est à noter que les segmentations basées sur des algorithmes de \textit{clustering} comme ceux que l'on vient de présenter nécessitent le plus souvent une phase supplémentaire de génération des frontières inter-segments et d'affectation de la valeur de chaque segment aux éléments qui le composent. 
 Par ailleurs, dans les deux cas du \textit{k-means} et du \textit{mean-shift}, chaque itération génère une réduction de la variance (due au moyennage) et on peut donc rapprocher ces techniques de celles de réduction de bruit par minimisation de variance.
 
 \subsection{Les contours actifs, ou \textit{snakes}}
@@ -159,15 +189,29 @@ Le principe général est de superposer une courbe paramétrique à l'image, le
 \item l'énergie interne de la courbe, fonction de son allongement de sa courbure.
 \item l'énergie externe liée à l'image, fonction de la proximité de la courbe avec les zones de fort gradient et éventuellement une contrainte fixée par l'utilisateur comme des points imposés par exemple.
 \end{itemize}
-Ici encore, la résolution du problème revient à minimiser une fonction d'énergie sous contrainte et les diverses techniques de résolution numérique peuvent s'appliquer comme pour les autres classes d'algorithmes itératifs présentés précédemment. 
+%TODO
+% formule générale
+Ici encore, la résolution du problème revient à minimiser une fonction d'énergie sous contrainte et les diverses techniques de résolution numérique peuvent s'appliquer comme pour les autres classes d'algorithmes itératifs présentés précédemment, avec ici encore, un nombre de paramètres à régler assez important.
 
 Dans sa version originale proposée par Kass \textit{et al.} en 1988 \ref{snake_kass_1988}, l'algorithme dit du \textit{snake} présente l'intérêt de converger en un nombre d'itérations assez réduit et permet de suivre naturellement un \textit{cible} en mouvement après une convergence initiale à une position donnée, chaque position de convergence fournissant une position initiale pertinente pour la position suivante.
-Toutefois, il se montre sensible à l'état initial de la courbe et requiert souvent de celle-ci qu'elle soit assez proche de l'objet à ``entourer'', sous peine de se verrouiller dans un minimum local. 
+Toutefois, il se montre particulièrement sensible à l'état initial de la courbe et requiert souvent de celle-ci qu'elle soit assez proche de l'objet à ``entourer'', sous peine de se verrouiller dans un minimum local. 
 La sensibilité au bruit n'est pas non plus très bonne du fait de la formulation locale de l'énergie.  
 Les ``concavités'' étroites ou présentant un goulot d'étranglement marqué sont par ailleurs mal délimitées.
 Enfin, la fonction d'énergie étant calculée sur la longueur totale de la courbe, cela pénalise la bonne identification des structures de petite taille vis à vis de la longueur totale de la courbe.
+La figure \ref{fig-snake-tradi-cochon} illustre ces défauts en montrant quelques états intérmédiaires ainsi que le résultat final d'une segmentation réalisée à partir d'un contour  initial circulaire et des paramètres réglés empiriquement, en employant la méthode du snake original.
+On voit que la convergence est assez rapide mais que le contour ainsi détérminé ne ``colle'' pas bien à l'objet que l'on s'attend à isoler.
+\begin{figure}
+  \centering
+\subfigure[Les états initial et après chacune des trois premières itérations]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it3.png}}\quad
+\subfigure[L'état  du contour après la septième itération]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it7.png}}\\
+\subfigure[L'état du contour après la dixième itération]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_it10.png}}\quad
+\subfigure[L'état du contour après la centième itération. C'est le contour final.]{\includegraphics[height=3cm]{/home/zulu/Documents/these_gilles/THESE/codes/snake/cochon128_tradi_snake_result.png}}   
+\caption{Segmentation d'une image en niveaux de gris de 128 $\times$ 128 pixels par algorithme dit du \textit{snake}, dans sa version originale. Les paramètres d'élastictié, de viscosité, de raideur et d'attraction ont été fixés respectivement aux valeurs 5, 0, 0.1 et 5. }
+\label{fig-snake-tradi-cochon}
+\end{figure} 
+
 Il est cependant possible de contrôler la finesse de la segmentation mais au prix de temps de calculs qui peuvent devenir très longs.
-Les variantes les plus intéressantes sont :
+Parmi les variantes élaborées qui tentent de pallier ces défauts, les plus intéressantes sont :
 \begin{itemize}
 \item le \textit{balloon snake}, conçu pour remédier au mauvais suivi des concavités en introduisant une force supplémentaire de pression tendant à \textit{gonfler} le snake jusqu'à ce qu'il rencontre un contour suffisamment marqué. Cela suppose toutefois que l'état initial de la courbe la situe entièrement à l'intérieur de la zone à segmenter et est surtout employé dans des applications semi-automatiques où l'utilisateur définit au moins une position et une taille initiales pour la courbe. 
 \item le \textit{snake} GVF (pour Gradient Vector Flow), dont le but est de permettre qu'une initialisation lointaine de la courbe ne pénalise pas la segmentation. Une carte des lignes de gradient est établie sur tout le domaine de l'image et sert à intégrer une force supplémentaire dans l'énergie totale, qui attire la courbe vers la zone de fort gradient.
@@ -177,12 +221,13 @@ Après la formulation initiale de Osher et Sethian en 1988 \ref{level_sets_osher
 \item les \textit{snake} orientés régions, qui visent essentiellement à mieux caractériser les zones à segmenter et améliorer la robustesse vis à vis du bruit en employant une formulation de l'énergie calculée sur le domaine complet de l'image \ref{cohenSMIE93, ronfard}. Les premiers résultats confirment la qualité de cette méthode, mais la nécessité d'effectuer les calculs sur l'image entière générait des temps de traitement prohibitifs jusqu'à ce que Bertaux \textitat{et al.} proposent une amélioration algorithmique exacte permettant à nouveau un calcul en 1D, le long de la courbe, moyennant une simple étape initiale générant un certain nombre d'images intégrales \ref{snake_bertaux}. La section \ref{sec_contrib_snake} qui introduit notre contribution à cette technique en donnera une description détaillée. 
 \end{itemize}
  
-
+% ne faut-il pas mieux éluder le paragraphe ci-dessous
 \subsection{Méthodes hybrides}
-Aujourd'hui, les algorithmes de segmentation les plus performants en terme de qualité emploient des techniques qui tentent de tirer le meilleur parti de plusieurs  des méthodes ``historiques'' décrites précédemment.
-Le meilleur exemple, et le seul que nous citerons, est le détecteur de contour et l'algorithme de segmentation associé proposé par Arbelaez \textit{et al.} en 2010 \ref{amfm_2010}. Il compose avec la constructions d'histogrammes locaux pour générer une matrice de similitude (affinity matrix) et appliquer les techniques liées à la théorie des graphes pour réduire la dimension de l'espace de représentation (calcul des valeurs et vecteurs propres). Il utilise ensuite une technique adaptée de \textit{ligne de partage des eaux} (que l'on aurait rangée avec les mean-shift) pour regrouper les segments. 
+Aujourd'hui, les algorithmes de segmentation les plus performants en terme de qualité emploient des techniques qui tentent de tirer le meilleur parti de plusieurs des méthodes ``historiques'' décrites précédemment.
+Le meilleur exemple, et le seul que nous citerons, est le détecteur de contour et l'algorithme de segmentation associé proposé par Arbelaez \textit{et al.} en 2010 \ref{amfm_2010}. Il compose avec la constructions d'histogrammes locaux pour générer une matrice de similitude (affinity matrix) et appliquer les techniques liées à la théorie des graphes pour réduire la dimension de l'espace de représentation (calcul des valeurs et vecteurs propres). Il utilise ensuite une technique adaptée de \textit{ligne de partage des eaux} \ref{watershed} (que l'on aurait rangée avec les mean-shift) pour regrouper les segments. 
 Les résultats sont très bons et des implémentations efficaces ont dores et déjà été écrites (voir section \ref{sec_ea_gpu}. 
-  
+%TODO 
+%peut-être dire deux mots sur le partage des eaux (avec kmeans et meanshift) puisqu'il est employé dans gPb